

SERIA DS300 Kontrola sterowania DSP

200-250-300-400 kVA

Wejście 3 fazy – Wyjście 3 fazy

Instrukcja użytkownika

<u>Spis treści</u>

Spis treści

	1
Spis treści	2
Bezpieczeństwo	4
1 Opis ogólny	5
1.1 Wprowadzenie	5
1.2 Schemat budowy	7
1.3 Opis bloków	8
1.4 Tryby pracy UPS	8
1.5 Widok frontu UPS – panel połaczeń	.10
1.6 Specyfikacja techniczna.	.11
2 INSTALACJA UPS	.12
2.1 Wprowadzenie	.12
2.2 Rozpakowywanie	.13
2.3 Pozycionowanie urządzenia.	.13
2.4 Podłaczenie przewodów zasilających UPS	.14
2.5 Uziemienie	.14
2.6 Procedury podłaczenia przewodów	.15
2.6.1 Połaczenia przewodów zasilania w UPS	16
2.7 Montaż akumulatorów	17
3 Panel przedni	18
3 1 Wprowadzenie	18
3.2 Onis menu przedniego panelu	19
3.2 Opis menu przedniego paneru. 3.2 1 Menu pomiary	21
3.2.1 Menu alarmy	.21
3.2.2 Menu informacie	.25
3.2.4 Menu oncie	.23 24
3.2.5 Menu komend	.2 4 26
3.2.6 Menu czas	.20 26
3.2.7 Monu Serwis	.20 27
3.2.7 Mellu Selwis	.27
3.2.0 Hosto užytkovniko	.27
2.2.4 Introduzytkowilika	.21 20
2.4 Status Vodu	.20
2.5 Komunikatu alamanya i azukkia nazwiazania	.51
5.5 Kolliulikaty alalilowe i szybkie lozwiązalia	.41 10
4. Instrukcja operacji	.40 10
4.1 w stęp	.40
4.2 Operowanie OPSeni w trybie onnine	.40
4.2.1 Start UPSa ze stanu wyjączenia:	.48
4.2.2 Wylączenie UPSa	.49
4.2.5 Przełączenie UPS z z normalnej pracy do trybu serwisowego	.49
4.2.4 Przetączenie się z trybu ręcznego Bypassu na normalną pracę.	.49
4.5 Zacnowanie UPS podczas awarii sieci	.50
5. Konserwacja	.50

	5.1 Konserwacja	50
	5.2 Codzienne sprawdzenia	51
	5.3 Tygodniowe sprawdzenia:	51
	5.4 Coroczne konserwacje	51
	5.5 Przechowywanie i transport UPS	51
6.	. Błędy i diagnozowanie	52
	6. 1 Ogólne procedury postępowania w przypadkach zauważenia błędu i diagnozowaniu	52
	6.2 Przed zadzwonieniem po serwis	53
7.	. Monitorowanie I kontrola zdalna UPS	53
	7.1 Użycie portu szeregowego	53
	7.2 Szeregowy Port komunikacyjny – podłączenie przewodowe	54
	7.3 Połączenia karty przekaźnikowej.	54
	· · · · ·	

Bezpieczeństwo

WAŻNE UWAGI

- 1. Przed przystąpieniem do instalacji i startowania UPS przeczytaj uważnie instukcję
- 2. należy stosować się do wszystkich ostrzeżeń zawartych w instrukcji
- 3. należy podążać za wszystkimi instrukcjami obsługi
- 4. jednostka powinna być zasilana z uziemionego źródła. Nie używaj bez uziemienia
- 5. przewody zasilania UPS należy uważnie kłaść, aby na nie nie nadepnąć
- 6. zachowaj tę instrukcję
- 7. zachowaj lub zutylizuj materiały pakowania

<u>OSTRZEŻENIE!</u>

- nie wkładaj żadnych przedmiotów w otwory wentylacji i inne

 w celu zmniejszenia ryzyka pożaru lub porażenia elektrycznego, przeprowadzaj instalacje w kontrolowanej temperaturze i wilgotności wewnątrz strefy wolnej od przewodników prądu.

- w celu zmniejszenia ryzyka pożaru zastępuj bezpieczniki tymi samymi typami o tych samych parametrach

UWAGA!

- UPS/akumulatory powinny być instalowane tylko przez wykwalifikowany personel
- ryzyko porażenia elektrycznego, nie usuwaj obudowy. Wewnątrz nie ma żadnych części serwisowalnych dla użytkownika, zleć serwis wykwalifikowanemu personelowi
- na wyjściu może być napięcie nawet jeśli jednostka nie jest podłączona do głównego zasilania
- ryzyko porażenia elektrycznego. Wewnątrz znajdują się niebezpieczne dla życia elementy. Jednostka jest zasilana z akumulatora nawet kiedy zasilanie AC jest odłączone
- w celu zmniejszenia ryzyka porażenia elektrycznego, przed instalacją przewodu sygnałowego interfejsu komputerowego odłącz UPS od głównego zasilania. Podłącz zasilanie tylko po sprawdzeniu połączeń przewodów.

UWAGA!

Jednostki są zaprojektowane do pracy na betonowej podłodze.

O akumulatorach

Uwaga: ryzyko porażenia elektrycznego!

Obwód baterii nie jest odizolowany od napięcia zasilania. Groźne napięcia mogą wystąpić między stykami akumulatora a ziemią!

-akumulator może powodować ryzyko wystąpienia porażenia lub pożaru od wysokoprądowych zwarć. Podczas pracy z akumulatorami należy postępować zgodnie z następującymi wytycznymi: -usunąć zegarki, pierścionki i inne metalowe przedmioty

-używać narzędzi z izolowanymi uchwytami

-akumulatory w UPS podlegają recyklingowi. Baterie muszą być składowane zgodnie z lokalnymi przepisami środowiskowymi. Akumulatory zawierają ołów i w przypadku złego składowania mogą

być groźne dla środowiska i zdrowia człowieka

-nie wrzucaj akumulatorów do ognia. Mogą one eksplodować. Nie należy otwierać lub uszkadzać akumulatorów. Zawierają one elektrolit, który jest toksyczny i groźny dla skóry i oczu. Jeśli dojdzie do kontaktu elektrolitu ze skórą, dotknięty obszar skóry powinien być niezwłocznie przemyty.
-wewnętrzne źródło energii (akumulator) nie może być rozładowywany przez użytkownika
-w przypadku wymiany akumulatorów, zainstaluj tę samą liczbę i typ baterii.

1 Opis ogólny

1.1 Wprowadzenie

Bezprzerwowe zasilacze z serii DELTA DS300 są UPS'ami on-line z podwójną konwersją produkowane są z wykorzystaniem najnowszych technologii IGBT i PWM, aby dostarczyć do obciążenia bezprzerwowy, kontrolowany przez mikroprocesor czysty sinusoidalny przebieg

Jednostki z serii DELTA DS300 są urządzeniami 3 fazowymi na wejściu i wyjściu, do instalacji pomiędzy 3 fazowym krytycznym obciążeniem a napięciem sieciowym 3 fazowym + N

Zalety używania DELTA DS300 UPS:

- Ochrona przed zanikiem zasilania:
 - Jeśli zaniknie zasilanie sieciowe, UPS kontynuuje dostarczanie zasilania używając energii zgromadzonej w jego akumulatorach, utrzymując odporność na obciążenia od zakłóceń zasilania.
- Wzrost jakości energii:

UPS posiada własny obwód wewnętrznego napięcia i regulacji częstotliwości, który zapewnia to, iż wyjście obciążenia utrzymywane jest w wąskich tolerancjach, niezależnych od zakłóceń napięcia i częstotliwości źródła zasilania.

- Pełne sterowanie cyfrowe przez 3 sterowniki DSP dla każdego UPSa UPS sterowany jest przez trzy niezależne DSP nieprzerwanie się ze sobą komunikujące. Moduły prostownika, falownika i interfejsu użytkownika mają osobne DSP w celu maksymalnej wydajności. Każdy moduł DSP posiada wiele parametrów do sterowania i monitorowania w celu otrzymania najlepszej najlepszej mocy na wyjściu oraz pomocy w diagnostyce.
- Wzrost redukcji szumu:

Przez zamianę zmiennego napięcia wejściowego na stałe i ponowną konwersję na napięcie zmienne (podwójna konwersja) jakikolwiek elektryczny szum występujący na wejściu źródła zasilania jest efektywnie izolowany od wyjścia UPS. Co więcej obciążenie jest zasilane tylko czystym i niezakłóconym napięciem zmiennym.

Podstawowe funkcje:

Technologie PWM i IGBT

- czysty sinusoidalny sygnał wyjściowy i rzeczywista topologia on-line
- Wysoki wejściowy PF
- niski prąd wejściowy
- wysoka wydajność AC/AC i DC/AC (do 94%)
- trzy oddzielne DSP
- funkcja zimnego startu
- funkcja statycznego bypassu: zapewnia transfer zasilania obciążenia na wewnętrzny bypass w przypadku przeciążenia lub awarii UPS
- system wykrywania upływów prądowych bypassu
- system konserwacji i ostrzegania, ochrona przez zwarciami bypassu
- funkcja oddzielnego wejścia bypassu, czułe wejście pracy agregatu prądotwórczego
- alfanumeryczny wyświetlacz LCD, wyświetlający stan materii, obciążenie, napięcie, moc i szczegółowe informacje
- ulepszona diagnostyka i poprawna informacja o awarii
- do 192 rekordów pamięci systemu (łącznie 7000 alarmów i ostrzeżeń)
- zegar czasu rzeczywistego i system kalendarza
- praca przeciążeniowa 10 minut na 100-125% obciążenia, 1 minuta na 125-150% obciążenia
- przeciążenie wejściowe, zabezpieczenia nadprądowe i zwarciowe, ograniczenie prądu wyjściowego
- regulowana praca nawet w warunkach 100% niezbalansowanego obciążenia
- funkcja nieliniowego obciążenia zasilania
- Podwójna biegunowość baterii (wewnętrznych i/lub zewnętrznych)
- Automatyczne i ręczne zwiększenie ładowania
- 3 oddzielne liczniki zegarowe konserwacji
- ograniczenie prądu ładowania akumulatora
- ochrona temperaturowa z 3 oddzielnymi czujnikami
- komunikacja interaktywna
- zdolność do diagnostyki i komunikacji z PC
- 2 oddzielne porty komunikacyjne RS232 (standardowo)
- Multi-monitoring UPS na tej samej linii komunikacyjnej RS485 (opcjonalnie)
- 4 wyjściowe styki bezpotencjałowe przekaźnika jako standard, 8 dodakowych jako opcja
- ulepszony system zdalnego monitoringu
- Multiplekser portu RS232
- Bezpośrednie połączenie sieci z opcjonalnym SNMP
- adapter MODBUS (opcjonalnie)
- komenda AT ustawia definicje dla uszkodzonych modemów
- komunikacja przez Windows oparta na T-MON i zdalnym monitoringu i sterowaniu UPS przez modem
- opcjonalne oprogramowanie kompatybilne z innymi platformami
- zdolność do oznaczania UPS przez użytkowników
- awaryjne złącze wyłączania zasilania
- zgodność z międzynarodowymi i lokalnymi standardami

- filtry wejściowe i wyjściowe AC
- opcjonalny przedni panel graficzny
- certyfikat CE
- zabezpieczenie wejścia, bypassu i obciążonej fazy
- opcjonalny system alarmowy wycieku prądu
- wejściowa i wyjściowe transformatory izolujące (opcjonalne)
- rozszerzone opcje akcesoriów
- 100 000 godzin MTBF
- 2 lata gwarancji systemu
- 10 lat gwarancji na części zapasowe

1.2 Schemat budowy

Rysunek 1.1 Schemat Blokowy UPS

- S1 (F1-F2-F3) : Przełącznik wejścia prostownika / Bezpiecznik
- S2 (F4-F5-F6) : Przełącznik wejścia bypass / Bezpiecznik
- S3 : Przełącznik serwisowy bypass
- S4 (F7-F8-F9) : Przełącznik wyjściowy / Bezpiecznik

S5 (F10-F11-F12)	: Przełącznik akumulatorów / Bezpiecznik
К1	: Stycznik wejścia prostownika
К2	: Stycznik wejścia falownika

1.3 Opis bloków

PROSTOWNIK: W UPS serii DS300, PWM kontroluje prostownik IGBT, używane jest to aby zwiększyć operacyjną moc wejściową (PFC) i aby zmniejszyć harmoniczne prądu (THDI)

Prostownik IGBT akceptuje 3 fazowe AC napięcie wejściowe i wytwarza napięcie DC o podwójnej polaryzacji do zasilenia zarówno falownika jak i ładowania akumulatorów.

AKUMULATORY: Akumulatory używane są jako zapasowe źródło zasilania napięciem DC dla falownika w przypadku awarii głównego zasilania. W serii DS300 akumulatory połączone są szeregowo z punktem wspólnym i tworzy napięcie zasilania DC o podwójnej polaryzacji.

Akumulatory są rozładowywane przez falownik podczas awarii głównego zasilania. Rozładowane akumulatory są ładowane przez prostownik IGBT zasilanym ciągłym prądem / ciągłym napięciem podstawowym, jeśli jest dostępne AC źródło zasilania.

FALOWNIK: Został zaprojektowany z użyciem najnowszych technologii IGBT i modulacji szerokości impulsu (PWM). Falownik zamienia napięcie DC uzyskane z prostownika IGBT i/lub akumulatorów w dobrze wyregulowane 3-fazowe napięcie AC ze stałą częstotliwością. Wyjście falownika używane jest do zasilenia obciążenia podłączonego do wyjścia UPS.

PRZEŁĄCZNIK STATYCZNEGO PRZESYŁU (STATIC BYPASS): Jest to elektroniczny przełącznik przesyłu, zezwalający na połączenie obciążenia z falownikiem lub do zasilania bypass'u. Podczas normalnej pracy, obciążenie jest zasilane z wyjścia falownika, lecz w przypadku przeciążenia przenoszone jest na bypass bez jakichkolwiek przerwań.

PRZEŁĄCZNIK SERWISOWEGO BYPASS'U (MBS): Jest to ręczny przełącznik mechaniczny, który używany jest do zasilenia obciążenia, używając źródła bypass'u, kiedy UPS jest wyłączony z powodu przeglądu lub występujących problemów.

Obciążenie jest niechronione przeciw zakłóceniom i braku zasilania kiedy jest podłączone do statycznego lub serwisowego źródła bypass'u.

1.4 Tryby pracy UPS

UPS może pracować w następujących trybach

A. praca normalna (jeśli dostępne jest główne zasilanie)

wszystkie bezpieczniki i przełączniki są zamknięte (pomijając przełącznik serwisowego bypassu), a zasilanie odbywa się z wyjścia falownika. Podczas normalnej pracy, prostownik zasila falownik mocą DC a w tym samym czasie ładuje akumulatory. Dlatego napięcie AC zasilające krytyczny ładunek nie jest przerywane, dopóki w pełni nie zostaną rozładowane akumulatory. Po rozładowaniu falownik wyłącza się i automatycznie samoczynnie ponownie startuje, razem z prostownikiem. Po odzyskaniu zasilania głównego, UPS wraca do normalnej pracy.

B. Praca na akumulatorach

akumulatory są połączone z wyjściem prostownika. W przypadku wystąpienia awarii zasilania (mocy zasilania lub napięcie wejściowe AC poza dopuszczalną tolerancją) prostownik zatrzymuje pracę i zasilanie falownika napięciem DC odbywa się z akumulatorów. Napięcie AC na wyjściu zasilające krytyczne obciążenie nie jest przerywane, dopóki akumulatory w pełni się nie rozładują. Po rozładowaniu falownik jest automatycznie wyłączany i ponownie załączany razem z prostownikiem kiedy zasilanie zostaje wznowione i UPS wraca do normalnej pracy. Dla UPS z osobnym wejściem bypassu, po rozładowaniu automatyczny wewnętrzny bypass przenosi obciążenie do źródła bypassu bezprzerwowo jeśli źródło bypassu jest w akceptowanej tolerancji napięcia i częstotliwości, a jednocześnie wejście prostownika jest niezasilone. Prostownik jest również wyłączany a falownik pracuje na akumulatorach podczas automatycznej lub manualnej procedury testu akumulatorów.

C. Praca By-Pass

Jeśli wyjście falownika jest przeciążone lub w przypadku problemu w UPS, automatyczny wewnętrzny bypass przenosi obciążenie do zasilania bypassu bezprzerwowo, pod warunkiem że zasilanie bypassu jest dostępne i w zakresie tolerowanych wartości wymaganego napięcia i częstotliwości. Jeśli przeciążenie ustąpiło lub przyczyna awarii jest usunięta, automatyczny wewnętrzny bypass przenosi krytyczne obciążenie ponownie do wyjścia falownika. Należy zauważyć, że podczas pracy z zasilania z bypassu, na obciążenie krytyczne mogą wpływać zakłócenia oraz awaria zasilania w obwodzie bypassu (nie ma podtrzymania akumulatorowego)

DS300 200-250-300-400kVA Panel przełączników i bezpieczników

1.6 Specyfikacja techniczna

MODEL	DS3200	DS3250	DS3300	DS3400
Wyjście (KVA)	200 kVA	250 kVA	300 kVA	400 kVA
Wyjście (KW)	180 kW	225 kW	270 kW	360 kW
Współczynnik mocy			0,9	
WEJŚCIE				
Liczba faz		3 Fazy	+ Neutralny	
Napięcie wejściowe	220	/380 Vac, 230/4	00 Vac lub 24	0/415 Vac
Tolerancja napięcia wejściowego	-	+20%, -25% (+1	5% for 240/4	15 Vac)
Wejściowy współczynnik mocy		0,98 – 0,99 (na	pełnym obcia	ążeniu)
Wejściowe THDI		\leq 5% (na pe	łnym obciąże	niu)
Częstotliwość wejściowa		50]	$Hz \pm 5\%$	
Napięcie By-pass	220/380 Vac,	230/400 Vac lu	b 240/415 Va	c 3 Fazy + neutralny
Częstotliwość By-pass		50]	$Hz \pm 2\%$	
Poziom RFI	EN62040-2			
WYJŚCIE				
Liczba faz	3 Fazy + Neutralny			
Napięcie wyjściowe	220/380 Vac, 230/400 Vac lub 240/415 Vac			
Tolerancja napięcia wyjściowego	$\pm 1\%$			
Częstotliwość wyjściowa	50 Hz			
Tolerancja częstotliwości (synchronizacja liniowa)	(± 2%)			
Tolerancja częstotliwości (wolny przebieg)		±	0,2%	
Efektywność (na pełnym liniowym obciążeniu)		D	0 94%	
Współczynnik szczytu obciążenia			3:1	
THD napięcia wyjściowego			≤ 3%	
Przeciążenie	125% obciąż	enia przez 10 m	in., 150% obc	ciążenia przez 1 min.
AKUMULATORY				
Ilość	60 bloków 12 V (2x30 60 szeregowych akumulatorów, zewnętrzne)			
Napięcie nominalne akumulatorów	± 405 Vdc			
Napięcie rozładowania	± 300 Vdc			
Test akumulatorów	Automatyczny i ręczny			

Doładowanie	Dostępne			
INTERFEJS				
Port RS 232		2x standardowo (COM1 i COM2)		
Wejście zewnętrznego pomiaru temperatury	Dostępne (standard)			
Port RS 485		Opcjonalnie		
Panel zdalnego podglądu		Opc	cjonalnie	
Adapter SNMP		Opc	cjonalnie	
Adapter Modbus	Opcjonalnie			
Styki przekaźników alarmowych	4x styki bezpotencjałowe (programowalne) 8 opcjonalnych			
Wejścia cyfrowe	2x opcjonalne			
Wejście awaryjnego wyłączenia zasilania	Dostępne (standard)			
ŚRODOWISKO				
Temperatura podczas pracy		0 -	– 40 °C	
Wilgotność podczas pracy		=<90% (be	ez kondensac	ji)
Poziom hałasu	$\leq 68 \text{ dB}$			
Wymiary (Wys x szer xgleb) (mm)	n) 1900 x 880 x 775 1900 x 1245 x 775			
Klasa ochronności	Klasa 1 - IP20			
Waga (bez akumulatorów) (w przybliżeniu kg)	495 550 710 795		795	

2 INSTALACJA UPS

2.1 Wprowadzenie

UWAGA!!!

- Nie podłączaj zasilania do zawartości UPS przed przybyciem autoryzowanego serwisu.
- UPS wraz z zawartością powinien być instalowany tylko przez wykwalifikowany personel.
- Podłączenie akumulatorów i serwis powinien być przeprowadzany przez wykwalifikowany personel.
- Nie zrób spięcia między biegunami akumulatorów. Z powodu wysokiego napięcia i wysokiego prądu spięcia istnieje ryzyko porażenia i poparzeń.
- Aby zapobiec wypadkom z powodu wystąpienia łuków elektrycznych zaleca się noszenie okularów ochronnych. Usuń obrączki, zegarki i wszystkie metalowe elementy. Używaj tylko narzędzi z izolowaną rączką. Noś gumowe rękawice.

Ten rozdział zawiera informacje odnośnie lokalizacji montażu UPS oraz akumulatorów. Wszystkie fabryki mają własne specjalności i wymogi toteż niniejsze procedury instalacji nie są opisane krok po kroku. Zamiast tego procedury ogólne i aplikacje są wyjaśnione dla personelu technicznego.

2.2 Rozpakowywanie

UPS jest spakowany i zamknięty w kartonie w celu ochrony przed uszkodzeniami.

1) Sprawdź czy istnieją jakieś uszkodzenia powstałe w wyniku transportu. Jeśli taka sytuacja ma miejsce wezwij bezzwłocznie listonosza i odeślij karton wraz z UPS.

2) Ostrożnie otwórz karton i wyjmij UPS.

3) Zachowaj karton oraz materiały do pakowania w celu późniejszego wykorzystania

Zawartość paczki:

1) Instrukcja użytkownika oraz gwarancja

- 2) Szafka i/lub półki na akumulatory (opcjonalnie)
- 3) Przewody połączeniowe akumulatorów

2.3 Pozycjonowanie urządzenia

- 1. Obszar montażu urządzenia musi umożliwiać łatwy dostęp do urządzenia.
- 2. UPS musi zostać zainstalowanym w obszarze chronionym, o odpowiednim przepływie powietrza i wolnym od nadmiernej ilości kurzu.
- 3. Musi zostać utrzymana minimalna przerwa 250 mm między przy tyle urządzenia aby zapewnić odpowiedni przepływ powietrza.
- 4. Wybierz pasujące miejsce (temperatura pomiędzy 0°C i 40°C) o odpowiedniej wilgotności (maksymalnie 90%).
- 5. Zalecane jest aby urządzenie znajdowało sięw dobrze wentylowanym pomieszczeniu (24°C).
- 6. Temperatura jest głównym czynnikiem determinującym żywotność akumulatorów oraz ich pojemność. Trzymaj akumulatory z dala od źródeł ciepła lub wlotów powietrza itd..
- 7. W przypadku pracy UPS w zakurzonym pomieszczenie, oczyść powietrze odpowiednim systemem filtracji powietrza.
- 8. Trzymaj urządzenie z dala od materiałów wybuchowych i łatwopalnych.
- 9. Unikaj bezpośredniego światła słonecznego, deszczu i wysokiej wilgotności.

<u>UWAGA!!!</u> Sprawdź ładowność wózka widłowego jeśli jest dostępny. NIE WOLNO PRZECHYLAC LUB PODNOSIĆ UPS Z ZAMONTOWANYMI WEWNĄTRZ AKUMULATORAMI.

2.4 Podłączenie przewodów zasilających UPS

UWAGA!!! Do zasilenia wejścia AC UPS powinna zostać użyta osobna linia zasilania. Nigdy nie używaj tej samej linii do zasilania innych urządzeń elektrycznych. Nie używaj żadnych dodatkowych przewodów aby zwiększyć długość przewodu wejściowego UPS. Zalecane jest używanie odpowiedniego MCCB do prądu wejściowego na linii wejściowej UPS.

Połączenie elektryczne paneli powinno być wspierane przez uziemione wyjście. W innym przypadku UPS i obciążenie zostaną pozbawione uziemienia. System uziemiania powinien być sprawdzony i zgodny z wymaganiami. Potencjalne różnice pomiędzy uziemieniem a przewodem neutralnym powinny być mniejsze niż 3 V AC.

Opis wejściowych i wyjściowych przewodów UPS pokazany jest na rysunku 2.1.

Zalecane przewody wejściowe oraz ocena bezpieczników podane jest w tabeli poniżej.

	Zalecany rozmiar przewodu (mm²)					
Moc UPS (KVA)	Wejście liniowe	Wejście Bypass / Wyjście UPS	Zewnętrzne akumulatory	Wejście AC / końcówki przewodów wyjściowych AC U – V – W - N	Końcówki akumulatorów + & -	
200	95	70	70	Śruba M12	Śruba M12	
250	120	95	95	Śruba M12	Śruba M12	
300	150	120	120	Śruba M12	Śruba M12	
400	185	150	150	Śruba M12	Śruba M12	

INFORMACJA:

Przewód neutralny powinien być 1,5 raza większy niż przewód wyjściowy lub przewód prądowy bypass. Owe zalecenia są tylko wskazówkami i podlegają lokalnym regulacjom.

2.5 Uziemienie

Kabel uziemiający musi być połączony do magistrali BUS BAR i związany z każdą szafą w systemie. Co więcej uziemienie i powiązanie przewodu neutralnego musi być zgodne z lokalnym prawem.

UWAGA!!! Nie zastosowanie się do procedur uziemiania może skutkować porażeniem elektrycznym lub ryzykiem pożaru.

2.6 Procedury podłączenia przewodów

<u>UWAGA!!!</u> Wszystkie połączenia w UPS muszą być wykonywane przez wykwalifikowany serwis

Po pozycjonowanie UPS, przewody muszą zostać podłączone tak jak opisano poniżej:

1. Zweryfikuj czy wszystkie przełączniki i bezpieczniki z przodu UPS są w pozycji "0" (wyłączone)

2. Podłącz 3 fazy wejściowe AC z głównego panelu dystrybucji do końcówki wejściowej AC jak pokazano na rysunku 2.1

<u>UWAGA!!!:</u> UPEWNIJ SIĘ CZY FAZY SĄ PODŁĄCZONE W POPRAWNEJ KOLEJNOŚCI.

Jeśli pojawi się błąd podłączenia faz, UPS nie przeniesie obciążenia na wyjście falownika. Jeśli nie widać na ekranie LCD w menu INFORMATION komunikatu SYNC:OK, zmień kolejność podłączenia faz.

- 3. Podłącz wyjście UPS na panel dystrybucji obciążenia.
- 4. Podłącz grupy akumulatorów. Odniesienie do rozdziału o montażu akumulatorów.

UWAGA:

- SPRAWDŹ OBIE GRUPY AKUMULATORÓW ZE WZGLĘDU NA NAPIĘCIE ORAZ BIEGUNOWOŚĆ
- NIE ZAŁĄCZAJ PRZEŁĄCZNIKA AKUMULATORÓW (F5) PRZED URUCHOMIENIEM UPS.
- 5. Podłącz miedzianą magistralę uziemienia do uziomu głównego panelu dystrybucji.

INFORMACJA: Uziemienie i podłączenie przewodów neutralnych musi być zgodne z lokalnym prawem.

UWAGA: Zauważ, że neutralne wejście (N1) MUSI być połączone do końcówki K10

2.6.1 Połączenia przewodów zasilania w UPS

 Tak jak pokazano w tabeli połączeń przewodów zasilających UPS, fazy U1, V1 i W1trójfazowej linii zasilania używane są jako wejście bypass podczas normalnych warunków pracy, jeśli nie ma żadnego osobnego źródła bypass (rozdzielony bypass). (U1, V1, W1 i U2, V2, W2 są w tym przypadku takie same)

- Jeśli są oddzielne 3 fazowe źródło AC dla bypass (rozdzielony bypasss):
 - a) Usuń połączenie pomiędzy K4 K5, K6 K7 i K8 K9.
 - b) Podłącz fazy do źródła bypass U2, V2 i W2 do K5, K7 i odpowiednio K9.
 - c) Podłącz przewód neutralny (N2) źródła bypass do K11.

Należy zauważyć, że przewód neutralny 3 faz wejściowych (N1) i neutralny 3 faz źródła bypass (N2) muszą być zawsze połączone razem do przewodu neutralnego wyjścia AC.

2.7 Montaż akumulatorów

UWAGA !!! Bądź ostrożny podczas łączenia akumulatorów.

<u>UWAGA!!!</u> Otwórz przełącznik/bezpiecznik akumulatorów przed tworzeniem połączeń akumulatorów.

Akumulatory związane z wyposażeniem UPS przeważnie zawarte są w specjalnie zaprojektowanej szafie akumulatorowej. W serii DS300 200, 250, 300, i 400 kVA nie ma przestrzeni na wewnętrzne baterie w szafie UPS.

Podczas używania stojaków na akumulatory, powinny być one umiejscowione i zamontowane zgodnie z wymaganiami producenta akumulatorów. W ogólności akumulatory wymagają dobrze wentylowanych, czystych i suchych środowisk o rozsądnej temperaturze aby móc osiągnąć efektywna pracę.

Minimalna przestrzeń 10 mm musi zostać utrzymana pionowo po bokach bloku akumulatorów. Minimalna przerwa 20 mm powinna być dostępna pomiędzy powierzchnią obudowy a każdą ze ścian. Wszystkie metalowe stojaki jak i szafy powinny być uziemione.

- 1. Rozpakuj każdy akumulator i sprawdź napięcie końcówek. Każdy akumulator w napięciem mniejszym niż 10,5 V musi zostać naładowany przed montażem.
- 2. Proszę sprawdzić podłączenie akumulatorów sprzętowe oraz w dokumentacji. (przewody, tace, diagram połączeń)
- 3. Proszę umiejscowić odpowiednią liczbę akumulatorów na każdym ze stojaków, w odniesieniu do instalacji akumulatorów oraz diagramu połączeń danych wraz z urządzeniem.
- 4. Zacznij montowanie akumulatorów z góry do dołu stojaka.
- 5. Bądź ostrożny przy połączeniach pomiędzy biegunami a stojakami.
- 6. Po połączeniu akumulatorów do siebie, podłącz "+", "0" i "-" początkowych akumulatorów do wejścia akumulatorowego UPS. Bądź ostrożny aby podłączyć odpowiednio akumulatory, nie załączaj ich (S5) przed sprawdzeniem wszystkich połączeń i uruchomieniem UPS. W serii DS300, 60 bloków akumulatorów połączonych jest szeregowo, centralnym podłączeniem wewnętrznym do przewodu neutralnego (N1- N2).

ZAUWAŻ IŻ ODDZIELNE PRZEWODY Z KAŻDEGO AKUMULATORA POWINNY BYĆ PODŁĄCZONE DO KOŃCÓWKI K2 ABY STWORZYĆ PUNKT POŁĄCZEŃ.

<u>UWAGA!!!:</u> NIGDY NIE ZAŁĄCZAJ S5 (BEZPIECZNIK AKUMULATORÓW) BEZ PODŁĄCZENIA DO K2.

3 Panel przedni

3.1 Wprowadzenie

Przedni panel UPS składa się z czteroliniowego alfanumerycznego wyświetlacza, 7 diod statusowych i dodatkowo 5 klawiszy funkcyjnych pozwalających na całkowity podgląd stanu UPS. Schematyczny diagram przepływu pomaga zrozumieć stan pracy UPS. Używając klawiszy funkcyjnych użytkownik może poruszać się po menu i zmieniać niektóre parametry.

- L1 : Dioda wskazująca przełączenie na bypass
- L2 : Dioda wskazująca obciążenie w obwodzie bypassu
- L3 : Dioda wskazująca wejściowe napięcie
- L4 : Kontrolka pracy prostownika
- L5 : Dioda wskazująca pracę na baterii
- L6 : Dioda wskazująca obciążenie na UPS
- L7 : Dioda wskazująca przełączenie na wyjście

Na przednim panelu znajduje się 5 klawiszy funkcyjnych. Są to: ENTER, GÓRA (↑), DÓŁ (↓), PLUS (+) I MINUS (-). Klawisze GÓRA i DÓŁ pomagają w poruszaniu się po menu, PLUS i MINUS są klawiszami wyboru opcji, ENTER służy do zatwierdzenia danej opcji lub menu.

3.2 Opis menu przedniego panelu

Używając klawiszy (\downarrow), (\uparrow) na przednim panelu, można poruszać się po poniższych menu funkcji. Na końcu każdego menu wyświetlona zostanie wiadomość <ENTER> EXIT, jeśli naciśniesz enter przejdziesz do menu nadrzędnego. Wszystkie menu mają 3 lub 4 poziomy.

	Menu	Funkcje		
1	STATUS	\rightarrow ENTER "idź do podmenu STATUS"		
2	MEASURES	→ ENTER "idź do podmenu POMIARY"		
3	ALARM LOGS	→ ENTER "idź do podmenu ALARMY"		
4	INFORMATION	\rightarrow ENTER "idź do podmenu INFORMACJA"		
5	OPTIONS	\rightarrow ENTER "idź do podmenu OPCJE"		
6	COMMAND	\rightarrow ENTER "idź do podmenu POLECENIA"		
7	TIME	\rightarrow ENTER "idź do podmenu CZAS"		
8	SERVICE	\rightarrow ENTER "idź do podmenu SERWIS"		
9	PASSWORD	\rightarrow ENTER "idź do podmenu HASŁA"		
10	ADJUST	\rightarrow ENTER "idź do podmenu REGULACJA"		
	Goto 1			

Menu podrzędne

Poziom 1	Poziom 2	Strona	Poziom 3
STATUS	Status UPS		
POMIARY WEJŚCIE			Pomiary na wejściu
	BYPASS		Pomiary na bypassie
	FALOWNIK		Pomiary na falowniku
	WYJŚCIE		Pomiary na wyjściu
	DC		Pomiary DC
	OGÓLNE		Ogólne pomiary
	WEJŚCIE-WYJŚCIE		
ALARMY	LOGI UPS	Strona 1	
	CZYTAJ CZYŚĆ LOG	Strona 1	
INFORMACJE	RS232 Comm 1:	Strona 1	
	RS232 Comm 2:	Strona 1	
	Maximum UPS Power	Strona 1	

	Znamionowe napięcie i częstotliwość	Strona 1	
	Wersja oprogramowania falownika	Strona 2	
	Wersja oprogramowania PFC	Strona 2	
	Wersja oprogramowania panelu	Strona 2	
	Model UPS	Strona 3	
	Protokół komunikacyjny	Strona 3	
	Numer seryjny	Strona 3	
OPCJE	OPCJE LCD		Opcje panelu LCD
	OPCJE KOMUNIKACJI		Opcje komunikacji
	OPCJE ALARMÓW		Opcje alarmów
	OPCJE BYPASSU		Opcje bypassu
POLECENIA	Transfer By-pass	Strona 1	
	Start ładowania	Strona 1	
	Test zwarcia akumulatora	Strona 1	
	Powtórne sprawdzenie	Strona 2	
	Programowanie modemu tel.	Strona 2	
	Dźwięk alarmu ON/OFF	Strona 3	
	Dźwięk ostrzeżeń	Strona 3	
	WEJŚCIE-WYJŚCIE		
CZAS	Aktualny czas	Strona 1	
	Aktualna data	Strona 1	
	Wybierz godzinę	Strona 2	
	Wybierz minutę	Strona 2	
	Wybierz dzień	Strona 3	
	Wybierz miesiąc	Strona 3	
	Wybierz rok	Strona 3	
	Aktualizuj czas i datę	Strona 4	
	WEJŚCIE-WYJŚCIE		
SERWIS	Licznik pracy	Strona 1	
	Maksymalne obciążenie	Strona 1	
	Resetuj błędy	Strona 1	
	Licznik konserwacji wentylatora	Strona 2	
	Licznik konserwacji akumulatora	Strona 2	
	Ogólny licznik konserwacji	Strona 2	
	Wycofaj polecenie	Strona 3	
	WEJŚCIE-WYJŚCIE		

HASŁO	Kod serwisowy	Strona 1	
	Ustaw hasło serwisowe	Strona 1	
	Ustaw hasło użytkownika	Strona 1	
	WEJŚCIE-WYJŚCIE		
REGULACJA	Regulacja grupowa		Automatyczne ustawienia
(po angielsku)	Opcje fabryczne falownika		Lista opcji
	Opcje fabryczne prostownika		Lista opcji
	Regulacja panelu		Lista opcji
	Regulacja wejścia AC		Opcje wejścia AC
	Regulacja bypassu AC		Opcje bypassu AC
	Regulacja wyjścia AC		Opcje wyjścia AC
	Regulacja DC		Opcje DC
	Regulacja zasilania		Opcje zasilania
	WEJŚCIE-WYJŚCIE		

3.2.1 Menu pomiary

W tym menu można obserwować wszystkie zmierzone wartości. Używając klawiszy up i down poruszaj się po elementach podmenu.

POMIARY / WEJŚCIE (Poziom 2)

W tym menu zlokalizowane są wszystkie pomiary na wejściu prostownika, użyj klawiszy up i down do poruszania się po podmenu.

POMIARY / WEJŚCIE (Poziom 2)		
P-N L1 L2 L3	Nagłówek	
V: 221/222/223 V	Napięcia wejścia AC mierzone od fazy no przewodu neutralnego	
I: 000/000/000 A Mierzone prądy fazowe wejścia RMS AC		
P-P L13 L21 L32	Nagłówek	
V: 381/382/383 V	Napięcia wejścia AC mierzone od fazy no przewodu neutralnego	
FREQ: 49.6 Hz	Mierzona częstotliwość na wejściu prostownika	

POMIARY / BYPASS (Poziom 2)

W tym menu zlokalizowane są wszystkie pomiary na wejściu bypassu, użyj klawiszy up i down do poruszania się po podmenu.

	POMIARY / BYPASS (Poziom 2)
P-N L1 L2 L3	Nagłówek

V: 221/222/223 V	Napięcia wejścia AC mierzone od fazy no przewodu neutralnego
OK OK	Mierzone prądy fazowe wejścia RMS AC
P-P L13 L21 L32	Nagłówek
V: 381/382/383 V	Napięcia wejścia AC mierzone od fazy no przewodu neutralnego
FREQ: OK / 50.0 Hz	Mierzona częstotliwość na wejściu bypassu

POMIARY / MENU FALOWNIKA (Poziom 2)

W tym menu zlokalizowane są wszystkie pomiary falownika, użyj klawiszy up i down do poruszania się po podmenu.

POMIARY / MENU FALOWNIKA (Poziom 2)		
P-N L1 L2 L3	Nagłówek	
V: 221/222/223 V	Napięcia wejścia AC mierzone od fazy no przewodu neutralnego	
FREQ: 50.0 Hz	Mierzona częstotliwość na wyjściu falownika	

POMIARY / MENU WYJŚĆ (Poziom 2)

W tym menu zlokalizowane są wszystkie pomiary wyjść UPS, użyj klawiszy up i down do poruszania się po podmenu.

POMIARY / MENU WYJŚĆ Strona 1 (Poziom 2)		
P-N L1 L2 L3	Nagłówek	
V: 221/222/223 V	Napięcia wejścia AC mierzone od fazy no przewodu neutralnego	
I: 00.0/00.0/00.0 A	Mierzone prądy fazowe wejścia RMS AC	
P-P L13 L21 L32	Nagłówek	
V: 381/382/383 V	Napięcia wejścia AC mierzone od fazy no przewodu neutralnego	
FREQ: 50.0 Hz	Mierzona częstotliwość na wyjściu UPS	

W lewo - poprzednia strona, W prawo - następna strona

POMIARY / MENU WYJŚĆ Strona 2 (Poziom 2)		
L1 L2 L3	Nagłówek	
Load 000/000/000 %	Mierzone procentowe obciażenie	
KW 000.0/000.0/000.0	Mierzona wyjściowa moc czynna	
KVA 000.0/000.0/000.0	Mierzona wyjściowa moc pozorna	
PF:	Współczynnik mocy	
C.F: 0.0 / 0.0 / 0.0	Współczynnik szczytu	

W lewo - poprzednia strona, W prawo - następna strona

POMIARY / MENU DC (Poziom 2)

W tym menu zlokalizowane są wszystkie pomiary DC, użyj klawiszy up i down do poruszania się po podmenu.

POMIARY / MENU DC (Poziom 2)		
VBAT 405/-405 V	Mierzone napięcia akumulatorów	
ICHRG 00.0/00.0 A	Mierzone prądy ładowania akumulatorów	
IDSCHRG 00.0/00.0 A	Mierzone prądy rozładowywania akumulatorów	
AKUMULATORY : 30 x 2	Akumulatory w jednej grupie	
PAR. BAT : 1	Grupy akumulatorów równoległych	
BATT. A/H : 007 Ah	Pojemność akumulatora Ah	
BACKUP TIME 0000 min	Obliczony czas pozostały	

POMIARY / MENU OGÓLNE (Poziom 2)

W tym menu zlokalizowane są wszystkie pomiary temperatury, użyj klawiszy up i down do poruszania się po podmenu.

POMIARY / MENU OGÓLNE (Poziom 2)		
TH1: C	Temperatura mierzona przez zewnętrzny czujnik	
TH2: 24.2 C	Temperatura mierzona wewnątrz szafy	
TH3: C Temperatura mierzona przez wewnętrzny czujnik		

3.2.2 Menu alarmy

Użyj tego menu, żeby zobaczyć alarmy.

ALARMY Strona 1 (Poziom 1)		
>191>03.10.12 14:33:26	Nr zdarzenia, data i czas (poruszanie klawiszami up i down)	
>000>07.12.12 16:58:26	Nr zdarzenia, data i czas (poruszanie klawiszami up i down)	
>001>07.12.12 12:24:26	Nr zdarzenia, data i czas (poruszanie klawiszami up i down)	
ALARM LOGS	Alarmy	
NACIŚNIJ & PRZYTRZYMAJ ENTER PRZEZ 3 SEKUNDY, ABY SKASOWAĆ ALARMY		

3.2.3 Menu informacje

W tym menu zlokalizowane są niektóre przydatne informacje, użyj klawiszy up i down do poruszania się po podmenu.

MENU INFORMACJE Strona 1 (Poziom 1)		
RS232 COMM: 1:	Wskaźnik aktywności RS232 dla com1	
RS232 COMM: 2:	Wskaźnik aktywności RS232 dla com2	
MAX POWER (VA): 60000	Maksymalna moc wyjściowa UPS VA	

NOMINAL VALUE:220/050 220/050	Znamionowa częstotliwość i napięcie na wejściu, wyjściu	
INV VERSION: 00001	Wersja oprogramowania modułu falownika	
PFC VERSION: 00001	Wersja oprogramowania modułu prostownika PFC	
LCD VERSION: 00001	Wersja oprogramowania panelu przedniego	
MODEL: NEO 60	Nazwa modelu UPS	
We for a second size of the second seco		

W górę - poprzednia strona, W dół - następna strona

MENU INFORMACJE Strona 2 (Poziom 1)		
RS232 COMM: 1:	Wersja protokołu komunikacyjnego	
RS232 COMM: 2:	Nr seryjny UPS	

W górę - poprzednia strona, W dół - następna strona

3.2.4 Menu opcje

Użyj klawiszy up i down do poruszania się po podmenu, na końcu strony przenosisz się do następnej strony. Menu ma 3 poziomy, jeśli hasło użytkownika jest włączone wymagają go niektóre parametry.

Poziom 2 – Opcje komunikacji			
	Zdalne sterowanie ON/OFF	Strona 1	
	Funkcja portu COM2	Strona 1	
	Wewnętrzne/zewnętrzne SNMP	Strona 1	
	Wejście REPO ON/OFF	Strona 1	
	PRZYPISANIE ALARMÓW	Strona 1	
	WEJŚCIE-WYJŚCIE	Strona 1	

OPCJE/ OPCJE LCD Strona 1 (Poziom 1)		
REMOTE CNTRL: ON/OFF	Naciśnij enter, aby włączyć/wyłączyć zdalne sterowanie	
COM2:SERVICE PORT	Wybieranie funkcji portu Com 2	
SNMP : INTERNAL/EXTERNAL	Lokalizacja rozgałęziacza SNMP	
REPO : ON / OFF	Włączenie lub wyłączenie awaryjnego zatrzymania na wejściu	
RELAY-ALARM ASSIGN	Naciśnij enter, aby przypisać alarm	
ENTER - EXIT	ENTER – wyjście to nadrzędnego menu	

Góra – o linie wyżej, dół – o linię niżej, (+) lub (-) opcje, ENTER – wybierz opcję

PRZEKAŹNIK-ALARM PRZYPIS Strona 1 (Poziom 3)

RELAY 1:	Wybór funkcji przekaźnika klawiszami lewo i prawo		
RELAY 2:	Wybór funkcji przekaźnika klawiszami lewo i prawo		
RELAY 3:	Wybór funkcji przekaźnika klawiszami lewo i prawo		
RELAY 4:	Wybór funkcji przekaźnika klawiszami lewo i prawo		
RELAY 5:	Wybór funkcji przekaźnika klawiszami lewo i prawo (opcje)		
RELAY 6:	Wybór funkcji przekaźnika klawiszami lewo i prawo (opcje)		

PRZEKAŹNIK-ALARM PRZYPIS Strona 2 (Poziom 3)		
Wybór funkcji przekaźnika klawiszami lewo i prawo (opcje)		
Wybór funkcji przekaźnika klawiszami lewo i prawo (opcje)		
Wybór funkcji przekaźnika klawiszami lewo i prawo (opcje)		
Wybór funkcji przekaźnika klawiszami lewo i prawo (opcje)		
Wybór funkcji przekaźnika klawiszami lewo i prawo (opcje)		
Wybór funkcji przekaźnika klawiszami lewo i prawo (opcje)		
ENTER - wyjście do nadrzędnego menu		

Góra – o linie wyżej, dół – o linię niżej, (+) lub (-) opcje, ENTER – wybierz opcję

Poziom 2 – Opcje alarmo	ów		
	OSTRZEŻENIE INTRVL	Strona 1	
	OSTRZEŻENIE LOG ON/OFF	Strona 1	
	STATUS LOG ON/OFF	Strona 1	
	RESTART ALF UŻYTKOWNIK/AUTO	Strona 1	
	WEJŚCIE-WYJŚCIE	Strona 1	

OPCJE/ OPCJE ALARMÓW Strona 1 (Poziom 3)		
WARNING INTRVL:10 sc	Okres ostrzeżenia dźwiękowego w sekundach	
WARNING LOG:ON/OFF	Naciśnij enter, aby włączyć/wyłączyć zapis logu	
STATUS LOG:ON/OFF	Naciśnij enter, aby włączyć/wyłączyć status zapisu logu	
ALF RESTART: USER/AUTO		

ENTER - EXIT

ENTER - wyjście to nadrzędnego menu

Poziom 3 – Opcje Bypass				
	VAT TRANSFER ON/OFF	Strona 1		
	GEN. BYPASS FORBIDDEN/FREE	Strona 1		
	GEN. SET SYNC XTAL/SYNC	Strona 1		
	OPERAT. MOD	Strona 1	ONLİNE / ECONO / SYNC / PARALLEL	
	ENTER - EXIT	Strona 1		

Opcje / Opcje Bypass Strona 1 (Poziom 3)		
VAT TRANSFER:ON/OFF	Naciśnij Enter aby wybrać transfer obciążenia ON/OFF	
GEN SET BYP:FORBID/FREE	Naciśnij Enter aby wybrać przejście Bypass na agregat Zabronione/dostępne	
GEN SET SYNC:XTAL/SYNC	Naciśnij enter aby wybrać synchronizacje agregatu XTAL/SYNC	
OPERAT. MOD	Naciśnij enter aby wybrać tryb pracy ONLINE / ECONO / SYNC / PARALLEL	
ENTER - EXIT	Nacisnij enter aby przejść poziom wyżej	

3.2.5 Menu komend

To menu składa się z komend dla UPSa, bądź ostrożny przy używaniu tych komend. Używaj przycisków góra i dół aby przesuwać kursor w menu aż do końca strony aby przejść na następną stronę. Przycisk <ENTER> zatwierdza wybraną komendę.

Menu komend COMMAND MENU Strona 1 (Poziom 1)		
ENTER <bypass></bypass>	Zatwierdź transfer obciążenia na Bypass	
ENTER <boost></boost>	Zatwierdź start trybu łądowania boost	
ENTER B.TEST > 405	Zatwierdź start krótkiego testu akumulatorów	
RELAY TEST:OFF	Lewy i prawy do testu złączy przekaźnika	
ENTER : MODEM INIT	ENTER zainicjuj modem dialup	
ALARM SOUND: ON/OFF	Naciśnij enter aby wynrać dostępność alarmu dźwiękowego	

3.2.6 Menu czas

Możesz sprawdzić czas i datę , informacje z RTC w UPSie, również możesz ustawić datę I czas w z tego menu.

Podążaj za strzałkami aby ustawić datę i czas.

3.2.7 Menu Serwis

To menu składa się z przydatnych informacji serwisowych i komend. Używaj przycisków góra i dół aby przesuwać kursor w menu aż do końca strony aby przejść na następną stronę. Przycisk <ENTER> zatwierdza wybraną komendę.

Menu serwis	- SERVICE MENU strona 1 (poziom 1)
HOURMETER:00075	Total operating hour of the UPS Sumaryczna ilość
	godzin pracy UPS
MAXLOAD:015 020 025 %	Zapis maksymalnej mocy użytej
ENTER <fault reset=""></fault>	ENTER reset błędów
FAN MAINT: 01000	Ustaw ilość godzin pracy wentylatora do przypomnienia
	o konserwacji Ustaw ilość godzin pracy wentylatora do
	przypomnienia o konserwacji
BAT MAINT :01200	Ustaw ilość godzin pracy akumulatorów do
	przypomnienia o konserwacji
GEN.MAINT: 00500	Ustaw ilość godzin pracy do przypomnienia o
	konserwacji ogólnej
LOGOUT:	ENTER wyjdź z zalogowania serwisowego

Jeśli licznik konserwacji jest niedostępny, widoczne jest słowo CANCEL.

3.2.8 Menu ustawień

To menu jest do celów serwisowych i nie jest dostępne dla użytkownika

3.2.9 Hasło użytkownika

Niektóre komendy lub opcje wymagają podania hasła. Jeśli w danej pozycji menu wymagane jest hasło , okno hasło pojawia się na ekranie i UPS prosi cię o podanie hasła. Jesli straciłeś hasło nasz serwis przywróci ci hasło.

Hasło użytkownika składa się z 4 cyfr, przesuwaj kursor w lewo i prawo wybierz cyfre i ustaw liczbę przesuwając góra i dół. Zrób tak dla wszystkich cyfr i gdy hasło będzie kompletne naciśnij przycisk ENTER. Jeśli hasło jest poprawne pojawi się komunikat A43 USER LOGIN na panelu LCD.

Password screen

SERV. PASS: 0000000 USER PASS: 0000

- - - Enter user or service password - - -

3.3 Alarmy i komunikaty

Wewnętrzna struktura UPS DS300 jest modułowa, składa się:

- modułu PFC prostownika
- Modułu falownika
- modułu panelu frontowego

Alarmy I ostrzeżenia są skateryzowane zgodnie z modułami , czyli zgodnie z tym przed alarmem lub ostrzeżeniem znajduję się dodatkowa informacja:

RXX – Alarmy i ostrzeżenia prostownika

RXX – Alarmy i ostrzeżenia falownika

RXX – Alarmy i ostrzeżenia panelu

gdzie: XX- liczba

Więcej niż jeden alarm może być obecny jednocześnie. Jeśli są obecne 4 alarmy w tym samym czasie, co 2 sekundy 1 komunikat będzie widoczny, za następne 2 sekundy drugi mokunikat będzie widoczny itd.

Jeśli A00 lub R00 jest pokazany na panelu LCD, oznacza to, że uszkodzony jest przypisany temu moduł. Zobaczymy komunikat: A00 INV FAULT = XXXX lub R00 PFC FAULT = XXXX. Liczby pokazane są jako X, determinuje to status kodu który, mówi nam czego dotyczy problem. Zobacz tabele kodów stattusów która w szczegółach wyjaśnia kod.

Kody alarmowe modułu Prostownika		
REC CODE = XXXX		XXXX SYSTEM W module prostownika wystąpi błąd
R00 REC FAULT =XXXX	Błąd	Napięcie AC wejściowe jest wysokie DZWOŃ PO SERWIS!
R01 AC INPUT HIGH	Alarm	Prostownik Napięcie wejściowe AC jest niskie
R02 LINE FAILURE	Alarm	Prostownik Napięcie wyjściowe DC jest wysokie
R03 DC BUS HIGH	Alarm	Napięcie wyjściowe DC prostownika jest wysokie, prostownik stop
R05 FREQ TOLER	Alarm	Częstotliwość wejściowa prostownika poza tolerancją
R06 OVERTEMPERATURE	Alarm	Temperatura radiatora prostownika wysoka
R07 BLACKOUT	Alarm	Krótka przerwa napięciowa VAC na wejściu prostownika

R08 I/P OVERCURRENT	Alarm	Alarm IGBT prostownika
R09 ROTATE PHASE	Alarm	Sekwencja faz na wejściu prostownika niepoprawna
R14 PFC MANUAL STOP	Alarm	Moduł inwertera zatrzymał prostownik
R15 DC LOW	Alarm	Napięcie na magistrali DC jest niższe niż napięcie startowe prostownika
R17 BATTERY TEST	Ostrzeżenie	Obecnie przeprowadzany jest test akumulatorów
R18 BOOST CHARGE	Ostrzeżenie	Obecnie prostownik jest w trybie ładowania boost
R19 AC HIGH	Alarm	Pik Napięcia AC jest wyższy niż 20% nominalnego zakresu
R20 INPUT CB OPEN	Ostrzeżenie	Wejściowy CB jest wyłączony
R21 PFC STOP	Ostrzeżenie	Obecnie moduł prostownika Stop
R22 POS CHG LIMIT	Ostrzeżenie	(+) osiągnięty limit prądu ładowania
R23 NEG CHG LIMIT	Ostrzeżenie	(-) osiągnięty limit prądu ładowania
R24 WAITING DC BUS	Ostrzeżenie	Prostownik czeka ze startem na wzrost magistrali DC
R25 BATTERY FAILURE	Ostrzeżenie	Test akumulatorów - błąd
R26 BATT TEMP SENSOR	Ostrzeżenie	Czujnik temperatury akumulatorów jest uszkodzony lub nie połączony
R27 BATT TEMP HIGH	Ostrzeżenie	Temperatura akumulatorów jest wysoka
R29 PFC RESET	Ostrzeżenie	Moduł prostownika działa
R30 PLEASE WAIT	Ostrzeżenie	Prostownik czeka na ustawienie opóźnienia startu
R31 RECTIFIER START	Ostrzeżenie	Prostownik jest w stanie soft startu

Kody alarmowe modułu Panelu			
L01 TH1 TEMP HIGH	Ostrzeżenie	TH1 temperatura jest wysoka	
L02 TH2 TEMP HIGH	Ostrzeżenie	TH2 Temperatura jest wysoka	
L03 TH1 TEMP LOW	Ostrzeżenie	TH1 Temperatura jest niska	
L04 TH2 TEMP LOW	Ostrzeżenie	TH2 Temperatura jest niska	
L05 FAN MAINT	Ostrzeżenie	Wentylator – czas konserwacji	
L06 BATTERY MAINT	Ostrzeżenie	Czas konserwacji akumulatorów	
L07 OPT MAINTENANCE	Ostrzeżenie	Opcjonalny czas konserwacji	
L08 TH1 SENSOR FAIL	Ostrzeżenie	TH1 błąd czujnika temperatury	
L09 TH2 SENSOR FAIL	Ostrzeżenie	TH2 – błąd czujnika temperatury	
L10 ENTER FAULT RESET	Ostrzeżenie	UPS czeka na reset błędu do startu	

L11 BATT CB OPEN	Ostrzeżenie	Zewnętrzny rozłącznik bateryjny jest wyłączony
L12 GENERAL MAINT	Ostrzeżenie	Czas na konserwacje
L13 PFC CAN COMM ERR	Ostrzeżenie	Moduł CAN PFC komunikat poza czasem
L14 INV CAN COMM ERR	Ostrzeżenie	Moduł CAN INV komunikat poza czasem

	Kody ala	mowe modułu Falownika
INV CODE = 0XXX		Aktualny kod statusu modułu falownika
A00 INV FAULT = XXXX		XXXX występuje błąd modułu Falownika Wezwij serwis !
A01 O/P OVERCURRENT	Alarm	Alarm w IGBT w module falownika
A02 OVERTEMP SHUT	Alarm	Za wysoka temperatura w w module falownika
A03 BATT HIGH	Alarm	Moduł falownika zmierzył za wysokie napięcie na akumulatorach
A04 OUTPUT V.LOW	Alarm	Za niskie napięcie na wyjściu falownika
A05 OUTPUT V.HIGH	Alarm	Za wysokie napięcie na wyjściu falownika
A06 OVERLOAD SHUT	Alarm	Przeciążenie na wyjściu UPSa
A07 SHORT CIRCUIT	Alarm	Zwarcie na wyjściu UPSa
A08 ON MAINTENANCE	Alarm	Włączony bypass serwisowy
A09 MANUAL BYPASS	Alarm	Obciążenie jest transferowane przez bypass
A10 BATTERY LOW SHUT	Alarm	Falownik zmierzył za niskie napięcie na akumulatorach (poziom wyłączenia)
A11 REPO STOP	Ostrzeżenie	Został wysłany sygnał EPO
A12 DC BALANCE BAD	Ostrzeżenie	Przed startem falownika kondensatory nie są rozładowane
A13 PEAK CURRENT	Ostrzeżenie	Bardzo wysoki prąd na wyjściu UPSa
A14 INV NOT START	Ostrzeżenie	Błąd startu falownika
A17 BYPASS FAILURE	Ostrzeżenie	Błąd napięcia na wejściu Bypass
A18 BYPASS VOLT	Ostrzeżenie	Napięcie wejściowe na Bypassie jest poza tolerancją
A19 BYP FREQ.TOLER	Ostrzeżenie	Częstotliwość wejściowa na Bypassie jest poza tolerancją
A20 OVERLOAD	Ostrzeżenie	Obecnie obciążenie osiągnęło 100% pojemności
A21 OVERTEMP	Ostrzeżenie	Obecnie temperatura na radiatorze modułu falownika jest wysoka
A22 OUTPUT OFF	Ostrzeżenie	Nie ma napięcia na wyjściu UPS

A23 ON BYPASS	Ostrzeżenie	Obciążenie jest na Bypassie
A24 REVERSE CURRENT	Ostrzeżenie	Powraca prąd na wyjście UPS
A25 INV RESET	Ostrzeżenie	Falownik jest załączony
A26 BATTERY LOW	Ostrzeżenie	Akumulatory zmierzają do zupełnego rozładowania
A27 GENERATOR MODE	Ostrzeżenie	Agregat wystartował
A28 O/P PHASE LOSS	Ostrzeżenie	Któraś z faz wyjściowych UPSa nie ma napięcia
A29 SYNCHRON BAD	Ostrzeżenie	Falownik nie jest zsynchronizowany z napięciem wejściowym Bypassu
A30 SHORT CIRCUIT	Ostrzeżenie	Wystąpiło zwarcie na wyjściu UPSa
A31 OUTPUT SWITCH	Ostrzeżenie	Wyjściowy przełącznik UPSa jest wyłączony
A32 SERVICE LOGIN	Ostrzeżenie	Aktywowany login serwisowy
A34 BYP ROTATE PHASE	Ostrzeżenie	Niepoprawna sekwencja faz na Bypassie
A35 INV STOP	Ostrzeżenie	Zatrzymanie pracy modułu falownika
A36 INV DC DOWN	Ostrzeżenie	Napięcie na magistrali DC jest niższe niż 120VDC
A37 AC CURR LIMIT	Ostrzeżenie	Limit wyjściowego prądu falownika
A38 FUSE FAILURE	Ostrzeżenie	Któryś z bezpieczników UPSa przepalony
A39 PSP FAILURE	Alarm	Zasilanie płyty kontrolnej modułu falownika poza tolerancją
A40 INVERTER START	Ostrzeżenie	Falownik jest w trybie soft startu i czeka na finisz
A43 USER LOGIN	Ostrzeżenie	Użytkownik zalogowany
A45 SERV.PASSWORD	Błąd	Wymagane hasło do serwisu

Jeśli któryś z alamów jest wyświetlony na panelu LCD poza A00 i R00 UPS wystartuje automatycznie jeśli warunki są w normie. Ale jest zobaczysz komunikat A00 lub R00 w połączeniu z innymi alarmami **musisz wezwać serwis!**

Jeśli komunikaty ostrzeżeń pojawiają się podczas uruchamiania UPS – nie jest to problem

Kod informacji jest użyteczny dla serwisu, oznacza różny rodzaj problemu

3.4 Status Kodu

Status kodu modułu inwertera

	Falownik L1- L2- L3 – kody
163	Podczas soft startu pod koniec 4 sekundy L1 napięcie wyjściowe jest niższe niż 30VAC
263	Podczas softstartu pod koniec 4 sekundy L2 napięcie wyjściowe jest niższe niż 30VAC
363	Podczas soft startu pod koniec 4 sekundy L3 napięcie wyjściowe jest niższe niż 30VAC

164	Podczas soft startu pod koniec 4 sekundy L1 napięcie wyjściowe jest wyższe niż wartość (Napięcie wysokie/2)
264	Podczas soft startu pod koniec 4 sekundy L2 napięcie wyjściowe jest wyższe niż wartość (Napięcie wysokie/2)
364	Podczas soft startu pod koniec 4 sekundy L3 napięcie wyjściowe jest wyższe niż wartość (Napięcie wysokie/2)
165	Podczas pracy falownika faza L1 napięcie wyjściowe jest wyższe niż poziom alarmu napięcia wysokiego
265	Podczas pracy falownika faza L2 napięcie wyjściowe jest wyższe niż poziom alarmu napięcia wysokiego
365	Podczas pracy falownika faza L3 napięcie wyjściowe jest wyższe niż poziom alarmu napięcia wysokiego
166	Podczas pracy falownika faza L1 napięcie wyjściowe jest niższe niż poziom alarmu napięcia wysokiego
266	Podczas pracy falownika faza L2 napięcie wyjściowe jest niższe niż poziom alarmu napięcia wysokiego
366	Podczas pracy falownika faza L3 napięcie wyjściowe jest niższe niż poziom alarmu napięcia wysokiego
167	Faza L1 SCR bypass musi być wyłączona, ale jest napięcie na L1 napięcia wyjściowego UPS
267	Faza L2 SCR bypass musi być wyłączona, ale jest napięcie na L1 napięcia wyjściowego UPS
367	Faza L3 SCR bypass musi być wyłączona, ale jest napięcie na L1 napięcia wyjściowego UPS
168	Faza L1 wyłączone przez przeciążenie
268	Faza L2 wyłączone przez przeciążenie
368	Faza L3 wyłączone przez przeciążenie
169	Przeciążenie prądowe na fazie L1 jest dłuższe niż dozwolony czas
269	Przeciążenie prądowe na fazie L2 jest dłuższe niż dozwolony czas
369	Przeciążenie prądowe na fazie L3 jest dłuższe niż dozwolony czas
170	Na fazie L1 wystąpiło chwilowe zwarcie ale teraz falownik działa
270	Na fazie L2 wystąpiło chwilowe zwarcie ale teraz falownik działa
370	Na fazie L3 wystąpiło chwilowe zwarcie ale teraz falownik działa
171	Na wyjściu fazy L1 wystąpiło zwarcie powodujące wyłączenie
271	Na wyjściu fazy L2 wystąpiło zwarcie powodujące wyłączenie
371	Na wyjściu fazy L3 wystąpiło zwarcie powodujące wyłączenie
172	Podczas okna czasowego 4 napięcie wyjściowe fazy L1 jest niższe niż poziom alarmu napięcia niskiego
272	Podczas okna czasowego 4 napięcie wyjściowe fazy L2 jest niższe niż poziom alarmu napięcia niskiego

372	Podczas okna czasowego 4 napięcie wyjściowe fazy L3 jest niższe niż poziom alarmu napięcia niskiego
173	Podczas okna czasowego 4 napięcie wyjściowe fazy L1 jest wyższe niż poziom alarmu napięcia wysokiego
273	Podczas okna czasowego 4 napięcie wyjściowe fazy L2 jest wyższe niż poziom alarmu napięcia wysokiego
373	Podczas okna czasowego 4 napięcie wyjściowe fazy L3 jest wyższe niż poziom alarmu napięcia wysokiego
174	Na fazie L1 na wyjściu UPSa przez ostatnie 100 mimisekund przemienność nie zmieniła się
274	Na fazie L2 na wyjściu UPSa przez ostatnie 100 mimisekund przemienność nie zmieniła się
374	Na fazie L3 na wyjściu UPSa przez ostatnie 100 mimisekund przemienność nie zmieniła się
175	Na fazie L1 na wejściu bypassa przez ostatnie 100 mimisekund przemienność nie zmieniła się
275	Na fazie L2 na wejściu bypassa przez ostatnie 100 mimisekund przemienność nie zmieniła się
375	Na fazie L3 na wejściu bypassa przez ostatnie 100 mimisekund przemienność nie zmieniła się
176	Na fazie L1 na wyjściu falownika przez ostatnie 100 mimisekund przemienność nie zmieniła się
276	Na fazie L2 na wyjściu falownika przez ostatnie 100 mimisekund przemienność nie zmieniła się
376	Na fazie L3 na wyjściu falownika przez ostatnie 100 mimisekund przemienność nie zmieniła się
177	Faza L1 wyjściowy czujnik prądu otwarty
277	Faza L2 wyjściowy czujnik prądu otwarty
377	Faza L3 wyjściowy czujnik prądu otwarty

Falownik fazy L1 -L2 – L3 status kodów		
178	Zatrzymanie falownika ale na wyjściu falownika na fazie L1 nadal jest napięcie DC	
278	Zatrzymanie falownika ale na wyjściu falownika na fazie L2 nadal jest napięcie DC	
378	Zatrzymanie falownika ale na wyjściu falownika na fazie L3 nadal jest napięcie DC	
179	Podczas pracy falownika ostatnie 25 milisekund napięcie wyjściowe na fazie L1 przemienność nie zmieniła się	
279	Podczas pracy falownika ostatnie 25 milisekund napięcie wyjściowe na fazie L2 przemienność nie zmieniła się	
379	Podczas pracy falownika ostatnie 25 milisekund napięcie wyjściowe na fazie L3 przemienność nie zmieniła się	

180	Na końcu okna czasowego 4 podczas ponownego soft startu na koniec 4 sekundy napięcie wyjściowe L1 jest niższe niż 30 VAC
280	Na końcu okna czasowego 4 podczas ponownego soft startu na koniec 4 sekundy napięcie wyjściowe L2 jest niższe niż 30 VAC
380	Na końcu okna czasowego 4 podczas ponownego soft startu na koniec 4 sekundy napięcie wyjściowe L3 jest niższe niż 30 VAC
181	Na końcu okna czasowego 4 podczas ponownego soft startu na koniec 4 sekundy napięcie wyjściowe L1 jest wyższe niż wartość (napięcie wysokie/2)
281	Na końcu okna czasowego 4 podczas ponownego soft startu na koniec 4 sekundy napięcie wyjściowe L2 jest wyższe niż wartość (napięcie wysokie/2)
381	Na końcu okna czasowego 4 podczas ponownego soft startu na koniec 4 sekundy napięcie wyjściowe L3 jest wyższe niż wartość (napięcie wysokie/2)
182	Podczas włączania faza L1 na bypassie na karcie SCR musi być wyłączona, ale na wyjściu jest napięcie AC
282	Podczas włączania faza L2 na bypassie na karcie SCR musi być wyłączona, ale na wyjściu jest napięcie AC
382	Podczas włączania faza L3 na bypassie na karcie SCR musi być wyłączona, ale na wyjściu jest napięcie AC
183	Faza L1 na karcie SCR Bypass musi być włączona, ale jest tylko dodatnia przemienność na wyjściu UPSa
283	Faza L2 na karcie SCR Bypass musi być włączona, ale jest tylko dodatnia przemienność na wyjściu UPSa
383	Faza L3 na karcie SCR Bypass musi być włączona, ale jest tylko dodatnia przemienność na wyjściu UPSa
184	Faza L1 na karcie SCR Bypass musi być włączona, ale jest tylko ujemna przemienność na wyjściu UPSa
284	Faza L2 na karcie SCR Bypass musi być włączona, ale jest tylko ujemna przemienność na wyjściu UPSa
384	Faza L3 na karcie SCR Bypass musi być włączona, ale jest tylko ujemna przemienność na wyjściu UPSa
185	Faza L1 na karcie SCR Bypass musi być włączona, ale nie ma napięcia na wyjściu z UPSa
285	Faza L2 na karcie SCR Bypass musi być włączona, ale nie ma napięcia na wyjściu z UPSa
385	Faza L3 na karcie SCR Bypass musi być włączona, ale nie ma napięcia na wyjściu z UPSa
186	Wyłącznik wyjściowy jest naładowany, ale na fazie L1 wyjściu jest tylko dodatnia przemienność
286	Wyłącznik wyjściowy jest naładowany, ale na fazie L2 wyjściu jest tylko dodatnia przemienność
386	Wyłącznik wyjściowy jest naładowany, ale na fazie L3 wyjściu jest tylko dodatnia przemienność
187	Wyłącznik wyjściowy jest naładowany, ale na fazie L1 wyjściu jest tylko ujemna przemienność

287	Wyłącznik wyjściowy jest naładowany, ale na fazie L2 wyjściu jest tylko ujemna przemienność
387	Wyłącznik wyjściowy jest naładowany, ale na fazie L3 wyjściu jest tylko ujemna przemienność
188	Wyłącznik wyjściowy jest naładowany, ale na fazie L1 wyjściu nie ma napięcia AC
288	Wyłącznik wyjściowy jest naładowany, ale na fazie L2 wyjściu nie ma napięcia AC
388	Wyłącznik wyjściowy jest naładowany, ale na fazie L3 wyjściu nie ma napięcia AC
189	Podczas przenoszenia obciążenia na Bypass na fazie L1 wyjściu wykryto zwarcie
289	Podczas przenoszenia obciążenia na Bypass na fazie L2 wyjściu wykryto zwarcie
389	Podczas przenoszenia obciążenia na Bypass na fazie L3 wyjściu wykryto zwarcie
190	Na wyjściu fazy L1 wykryto powracający prąd
290	Na wyjściu fazy L2 wykryto powracający prąd
390	Na wyjściu fazy L3 wykryto powracający prąd
191	Podczas podawania obciążenia na inwerter, na fazie L1 bypassu wykryto prąd upływowy
291	Podczas podawania obciążenia na inwerter, na fazie L2 bypassu wykryto prąd upływowy
391	Podczas podawania obciążenia na inwerter, na fazie L3 bypassu wykryto prąd upływowy

Falownik DC status kodów		
400	Napięcie na magistrali DC wysokie	
401	Kontroler płyty falownika, zasilanie poza 1 tolerancją	
402	Kontroler płyty falownika, zasilanie poza 2 tolerancją	
404	Falownik stop ponieważ napięcie na (+)magistrala DC jest niskie	
405	Falownik stop ponieważ napięcie na (-)magistrala DC jest niskie	
406	Falownik w czasie okna czasowego 4, napięcie magistrali DC wysokie	

Falownik ogólne statusy kodów		
500	Falownik otrzymał zdalny sygnał do wyłączenia z RS232	
501	Falownik otrzymał zdalny sygnał do wyłączenia z interfejsu CAN	
502	Falownik wysłał alarm błędu IGBT 4 razy w czasie okna czasowego (30 min)	
503	Falownik wysłał alarm nadmiernej temperatury 4 razy w oknie czasowym (30 min)	
504	Falownik wysłał alarm niskiego napięcia na wyjściu AC 4 razy w oknie czasowym (30 min)	

505	Falownik wysłał alarm wysokiego napięcia na wyjściu AC 4 razy w oknie czasowym (30 min)
506	Falownik przekroczył czas podczas odczytu lub zapisu z eprom
507	Błąd pamięci falownika
508	Falownik 3 wyjścia fazowe przeciążone - wyłączenie
509	Bypass serwisowy falownika zamknięty
510	Błąd IGBT falownika
511	Nadmierna temperatura falownika - wyłączenie
512	Wyjście AC falownika 3 faz – niskie napięcie
513	Wyjście AC falownika 3 faz – wysokie napięcie
514	Wyjście falownika CB naładowane, ale wciąż wygląda jak nie naładowane
515	Wyjście falownika CB nie naładowane, ale wciąż wygląda jak naładowane
516	Wykryty błąd falownika, do restartu wymagane hasło
517	Wyjście falownika CB naładowane, ale na wyjściu UPS nie ma napięcia 3 fazowego
518	Falownik Bypass napięcie Ok, ale nie ma napięcia 3 fazowego na wyjściu UPS
,	
INV -	Falownik aktywacja kontrolnych kodów statusu
612	INV poprzez interfejs RS232 uaktualniona ilość akumulatorów
613	INV poprzez interfejs CAN1 uaktualniona ilość akumulatorów
614	INV poprzez interfejs RS232 uaktualniona częstotliwość wyjściowa bypassu i wyjścia
615	INV poprzez interfejs CAN1 uaktualniona częstotliwość wyjściowa bypassu i wyjścia
616	INV poprzez interfejs RS232 uaktualnione napięcie wyjściowe bypassu i wyjścia
617	INV poprzez interfejs CAN1 uaktualnione napięcie wyjściowe bypassu i wyjścia
618	INV poprzez interfejs RS232 uaktualnione opcje fabryczne
619	INV poprzez interfejs CAN1 uaktualnione opcje fabryczne
620	INV poprzez interfejs RS232 uaktualnione ustawienia użytkownika
621	INV poprzez interfejs CAN1 uaktualnione ustawienia użytkownika
622	INV poprzez interfejs RS232 otrzymana komenda ogólnego testu
623	INV poprzez interfejs CAN1 otrzymana komenda ogólnego testu
624	INV poprzez interfejs RS232 otrzymana komenda transferu obciążenia na Bypass
625	INV poprzez interfejs CAN1 otrzymana komenda transferu obciążenia na Bypass
626	INV poprzez interfejs RS232 otrzymana komenda transferu obciążenia na UPS
627	INV poprzez interfejs CAN1 otrzymana komenda transferu obciążenia na UPS
628	INV poprzez interfejs RS232 otrzymana komenda skopiowania pamięci operacyjnej RAM do ustawień fabrycznych
629	INV poprzez interfejs CAN1 otrzymana komenda skopiowania pamięci operacyjnej RAM do ustawień fabrycznych

630	INV poprzez interfejs RS232 otrzymana komenda skopiowania ustawień fabrycznych do pamięci operacyjnej RAM
631	INV poprzez interfejs CAN1 otrzymana komenda skopiowania ustawień fabrycznych do pamięci operacyjnej RAM
632	INV poprzez interfejs RS232 otrzymana komenda skopiowania pamięci operacyjnej RAM do strefy ustawień użytkownika
633	INV poprzez interfejs CAN1 otrzymana komenda skopiowania pamięci operacyjnej RAM do strefy ustawień użytkownika
634	INV poprzez interfejs RS232 aktywowany sprzężenie zwrotne prądu powrotnego
635	INV poprzez interfejs CAN1 aktywowany sprzężenie zwrotne prądu powrotnego
636	INV poprzez interfejs RS232 otrzymana komenda błędu resetu
637	INV poprzez interfejs CAN1 otrzymana komenda błędu resetu
638	INV poprzez interfejs RS232 otrzymana komenda krótkiego testu akumulatorów
639	INV poprzez interfejs CAN1 otrzymana komenda krótkiego testu akumulatorów
640	INV poprzez interfejs RS232 otrzymana komenda długiego testu akumulatorów
641	INV poprzez interfejs CAN1 otrzymana komenda długiego testu akumulatorów
642	INV poprzez interfejs RS232 otrzymana komenda anulowania testu akumulatorów
643	INV poprzez interfejs CAN1 otrzymana komenda anulowania testu akumulatorów
644	INV poprzez interfejs RS232 otrzymana komenda startu ładowania boost
645	INV poprzez interfejs CAN1 otrzymana komenda startu ładowania boost
646	INV poprzez interfejs RS232 otrzymana komenda stopu ładowania boost
647	INV poprzez interfejs CAN1 otrzymana komenda stopu ładowania boost
648	INV poprzez interfejs RS232 otrzymana komenda stopu krótkiego PFC
649	INV poprzez interfejs CAN1 otrzymana komenda stopu krótkiego PFC
650	INV poprzez interfejs RS232 otrzymana komenda startu trybu agregatu prądotwórczego
651	INV poprzez interfejs CAN1 otrzymana komenda startu trybu agregatu prądotwórczego
652	INV poprzez interfejs RS232 otrzymana komenda startu trybu uśpionego
653	INV poprzez interfejs CAN1 otrzymana komenda startu trybu uśpionego
654	INV poprzez interfejs RS232 otrzymana komenda wyjścia z trybu uśpionego
655	INV poprzez interfejs CAN1 otrzymana komenda wyjścia z trybu uśpionego
656	INV poprzez interfejs RS232 otrzymana komenda zalogowania serwisowego
657	INV poprzez interfejs CAN1 otrzymana komenda zalogowania serwisowego
658	INV poprzez interfejs RS232 otrzymana komenda wylogowania
659	INV poprzez interfejs CAN1 otrzymana komenda wylogowania
660	INV poprzez interfejs RS232 otrzymana komenda zalogowanie użytkownika
661	INV poprzez interfejs CAN1 otrzymana komenda zalogowanie użytkownika
662	INV poprzez interfejs RS232 otrzymana komenda z poziomu serwisu resetu błędów

663	INV poprzez interfejs CAN1 otrzymana komenda z poziomu serwisu resetu błędów
664	INV poprzez interfejs RS232 otrzymana komenda usunięcia profilu błędów pamięci
665	INV poprzez interfejs CAN1 otrzymana komenda usunięcia profilu błędów pamięci
666	INV poprzez interfejs RS232 otrzymana komenda startu trybu regeneracyjnego
667	INV poprzez interfejs CAN1 otrzymana komenda startu trybu regeneracyjnego
668	INV poprzez interfejs RS232 otrzymana komenda z poziomu użytkownika resetu błędów
669	INV poprzez interfejs CAN1 otrzymana komenda z poziomu użytkownika resetu błędów

Prostownik PFC status kodów

PFC L1-L2-L3 fazy status kodów	
1101	PFC wejście prądu faza AC L1 błąd sensor LEM
1201	PFC wejście prądu faza L2 błąd sensor LEM
1301	PFC wejście prądu faza L3 błąd sensor LEM
1102	Wejście fazy AC L1 próbka napięcia jest nieregularna bądź DC
1202	Wejście fazy AC L2 próbka napięcia jest nieregularna bądź DC
1302	Wejście fazy AC L3 próbka napięcia jest nieregularna bądź DC
1103	PFC napięcie wejściowe AC prostownika jest niższe niż R2187 na fazie wejściowej L1
1203	PFC napięcie wejściowe AC prostownika jest niższe niż R2187 na fazie wejściowej L2
1303	PFC napięcie wejściowe AC prostownika jest niższe niż R2187 na fazie wejściowej L3
1104	PFC napięcie wejściowe AC prostownika jest wyższe niż R2186 na fazie wejściowej L1
1204	PFC napięcie wejściowe AC prostownika jest wyższe niż R2186 na fazie wejściowej L2
1304	PFC napięcie wejściowe AC prostownika jest wyższe niż R2186 na fazie wejściowej L3
1105	PFC faza L1 AC pik napięcia wejściowego wyższy niż 20% od wartości nominalnego zakresu napięcia
1205	PFC faza L2 AC pik napięcia wejściowego wyższy niż 20% od wartości nominalnego zakresu napięcia
1305	PFC faza L3 AC pik napięcia wejściowego wyższy niż 20% od wartości nominalnego zakresu napięcia
1106	PFC faza L1 AC – osiągnięty limit prądowy
1206	PFC faza L2 AC – osiągnięty limit prądowy
1306	PFC faza L3 AC – osiągnięty limit prądowy

PFC DC – statusy kodów		
1400	PFC magistrala DC + napięcie jest wyższe niż R2131 nastawialne	
1401	PFC magistrala DC - napięcie jest wyższe niż R2131 nastawialne	

1402	PFC DC błąd sensora prądowego LEM
1403	PFC moduł magistrali + DC alarm napięcia wysokiego powtórzył się 4 krotnie w oknie czasowym R2166
1404	PFC moduł magistrali - DC alarm napięcia wysokiego powtórzył się 4 krotnie w oknie czasowym R2166
1405	PFC karty błąd napięcia zasilania izolowanego
1406	PFC komponent mocy prostownika DC wykrył upływ

PFC – ogólny status kodów	
1500	PFC otrzymana komenda zdalnego awaryjnego wyłączenia UPSa z interfejscu RS232 lub CAN
1501	PFC alarm IGBT
1502	PFC alarm przeciążenia prądowego
1503	PFC wejście CB rozłącznika nie nasycone ale wciąż wygląda jak nasycone
1504	PFC wejście CB rozłącznika nasycone ale wciąż wygląda jak nie nasycone
1505	PFC błąd limitu czasowego z eeprom
1506	PFC błąd pamięci eeprom
1507	PFC moduł IGBT alarm powtórzony 4 razy w oknie czasowym R2165
1508	PFC moduł nadmiernej temperatury alarm powtórzony 4 razy w oknie czasowym R2167
1509	PFC Wejście 3 fazowe AC – błąd mocy na UPS (2,5 sekundy później po awarii zasilania)
1510	PFC 3 fazy AC napięcie wejściowe prostownika jest wysokie (2,5 sekundy później po awarii zasilania)
1511	PFC AC błąd zasilania on fazach L1-L2 (faza do fazy)
1512	PFC AC błąd zasilania on fazach L1-L3 (faza do fazy)
1513	PFC AC błąd zasilania on fazach L2-L3 (faza do fazy)
1514	PFC napięcie AC jest wysokie na fazach L1-L2 (faza do fazy)
1515	PFC napięcie AC jest wysokie na fazach L1-L3 (faza do fazy)
1516	PFC napięcie AC jest wysokie na fazach L2-L3 (faza do fazy)

PFC – aktywacja kontrolnych statusów kodu	
1612	PFC poprzez interfejs RS232 uaktualniona ilość akumulatorów

1613	PFC poprzez interfejs CAN1 uaktualniona ilość akumulatorów
1614	
	PFC poprzez interfejs RS232 zakres częstotliwości wejściowej uaktualniony
1615	PFC poprzez interfejs CAN1 zakres częstotliwości wejściowej uaktualniony
1616	PFC uaktualnione ustawienia poprzez interfejs RS232
1617	PFC uaktualnione ustawienia poprzez interfejs CAN
1618	PFC prostownik napięcie wejściowe AC uaktualnione poprzez RS232
1619	PFC prostownik napięcie wejściowe AC uaktualnione poprzez CAN
1626	PFC poprzez interfejs RS232 otrzymana komenda testu sygnału wejściowego AC
1627	PFC poprzez interfejs CAN otrzymana komenda testu sygnału wejściowego AC
1628	PFC poprzez interfejs RS232 otrzymana komenda skopiowania pamięci operacyjnej RAM do ustawień fabrycznych
1629	PFC poprzez interfejs CAN1 otrzymana komenda skopiowania pamięci operacyjnej RAM do ustawień fabrycznych
1630	PFC poprzez interfejs RS232 otrzymana komenda skopiowania ustawień fabrycznych do pamięci operacyjnej RAM
1631	PFC poprzez interfejs CAN1 otrzymana komenda skopiowania ustawień fabrycznych do pamięci operacyjnej RAM
1632	PFC poprzez interfejs RS232 otrzymana komenda skopiowania pamięci operacyjnej RAM do pamięci ustawień użytkownika
1633	PFC poprzez interfejs CAN1 otrzymana komenda skopiowania pamięci operacyjnej RAM do pamięci ustawień użytkownika
1636	PFC poprzez interfejs RS232 otrzymana komenda zamknięcia sumy kontrolnej pamięci
1637	PFC poprzez interfejs CAN1 otrzymana komenda zamknięcia sumy kontrolnej pamięci
1638	PFC poprzez interfejs RS232 otrzymana komenda startu krótkiego testu akumulatorów
1639	PFC poprzez interfejs CAN1 otrzymana komenda startu krótkiego testu akumulatorów
1640	PFC poprzez interfejs RS232 otrzymana komenda startu długiego testu akumulatorów
1641	PFC poprzez interfejs CAN1 otrzymana komenda startu długiego testu akumulatorów
1642	PFC poprzez interfejs RS232 otrzymana komenda anulowania testu akumulatorów
1643	PFC poprzez interfejs CAN1 otrzymana komenda anulowania testu akumulatorów
1644	PFC poprzez interfejs RS232 otrzymana komenda startu trybu ładowania boost
1645	PFC poprzez interfejs CAN1 otrzymana komenda startu trybu ładowania boost
1646	PFC poprzez interfejs RS232 otrzymana komenda zatrzymania trybu ładowania boost
1647	PFC poprzez interfejs CAN1 otrzymana komenda zatrzymania trybu ładowania boost
1648	PFC poprzez interfejs RS232 otrzymana komenda szybkiego stopu
1649	PFC poprzez interfejs CAN1 otrzymana komenda szybkiego stopu
1650	PFC poprzez interfejs RS232 otrzymana komenda startu trybu zasilania z agregatu prądotwórczego

1651	PFC poprzez interfejs CAN1 otrzymana komenda startu trybu zasilania z agregatu prądotwórczego
1652	PFC poprzez interfejs RS232 otrzymana komenda wejścia w tryb uśpiony
1653	PFC poprzez interfejs CAN1 otrzymana komenda wejścia w tryb uśpiony
1654	PFC poprzez interfejs RS232 otrzymana komenda wyjścia z trybu uśpionego
1655	PFC poprzez interfejs CAN1 otrzymana komenda wyjścia z trybu uśpionego
1656	PFC poprzez interfejs RS232 otrzymana komenda logowania serwisowego
1657	PFC poprzez interfejs CAN1 otrzymana komenda logowania serwisowego
1658	PFC poprzez interfejs RS232 otrzymana komenda wylogowania
1659	PFC poprzez interfejs CAN1 otrzymana komenda wylogowania
1660	PFC poprzez interfejs RS232 otrzymana komenda logowania użytkownika
1661	PFC poprzez interfejs CAN1 otrzymana komenda logowania użytkownika
1662	PFC poprzez interfejs RS232 otrzymana komenda błędu resetowania z poziomu serwi
1663	PFC poprzez interfejs CAN1 otrzymana komenda błędu resetowania z poziomu serwi
1664	PFC poprzez interfejs RS232 otrzymana komenda usunięcia błędu profilu pamięci
1665	PFC poprzez interfejs CAN1 otrzymana komenda usunięcia błędu profilu pamięci
1666	PFC poprzez interfejs RS232 otrzymana komenda sprzężenia zwrotnego energii do zasilania
1667	PFC poprzez interfejs CAN1 otrzymana komenda sprzężenia zwrotnego energii do zasilania
1668	PFC poprzez interfejs RS232 otrzymana komenda błędu resetowania z poziomu użytkownika
1669	PFC poprzez interfejs CAN1 otrzymana komenda błędu resetowania z poziomu użytkownika

Do opisu szczegółowego statusu kodów proszę odwołaj się do instrukcji serwisowej

3.5 Komunikaty alarmowe i szybkie rozwiązania

Kody alarmów i informacje pokazane są w 4 linii na wyświetlaczu LCD na panelu, zróżnicowane komunikaty mówią o różnych wydarzeniach i pewne z nich mogą użytkownikowi pomóc do oceny czy musi wezwać serwis.

Zanotuj: Jeśli pojawią się komunikaty na wyświetlaczu LCD inne alarmy czy ostrzeżenia nie będą pokazane: **R00 REC FAULT = XXXX lub A00 INV FAULT = XXXX**

R00 REC FAULT =XXXX Wezwij Serwis

R01 AC INPUT HIGH (napięcie AC wysokie)

Napięcie wejściowe UPS jest bardzo wysokie, sprawdź napięcie wejściowe AC, jeśli jest naprawdę wysokie, poczekaj aż napięcie wróci do normalnego stanu

R02 LINE FAILURE (Błąd linii zasilającej)

Napięcie wejściowe na UPSie jest bardzo niskie, sprawdż napięcie wejściowe, jeśli jest rzeczywiście niskie poczekaj aż napięcie wejściowe AC wróci do normalnego stanu

R03 DC BUS HIGH (napięcie na magistrali DC wysokie)

Wezwij Serwis

R05 FREQ TOLER (częstotlwość poza tolerancją)

Częstotliwość wejściowa AC w UPSie jest poza tolerancją, poczekaj aż częstotliwość będzie w zakresie

R06 OVERTEMPERATURE (nadmierna temperatura) Nadmierna temperatura na module prostownika, wezwij serwis

R07 BLACKOUT (zapad)

Jest krótki zapad napięcia na wejściu AC UPSa, chwilowa przerwa aż napięcie wróci do normalnych warunków

R08 I/P OVERCURRENT (przeciążenie prądowe na wejściu)

Wezwij serwis

R09 ROTATE PHASE (rotacja faz)

Sekwencja faz na wejściu UPS jest zamieniona, proszę skontaktuj się technicznym personelem w celu ustawienia prawidłowej sekwencji faz

R14 PFC MANUAL STOP (reczny stop)

Ten komunikat pokazuje, że prostownik został zatrzymany z przyczyn alarmowych, sprawdź inne alarmy pokazane razem z tym alarmem

R15 DC LOW (napięcie DC wysokie)

Napięcie na magisttrali DC lub napięcie na akumulatorach jest bardzo niskie, poczekaj 10 minut, jeśli się to nie zmieni, wezwij serwis

R17 BATTERY TEST (test akumulatorów)

Przez 30 sekund UPS przprowadza test akumulatorów, po teście UPS decyduje czy baterie są ok, lub nie. Po tym UPS wraz do normalnego statusu automatycznie

R18 BOOST CHARGE (ładowanie Boost)

Przez 10h tryb ładowania boost jest aktywowany, po 10h UPS wraca do normalnego trybu ładowania

R19 AC HIGH (Napięcie AC wysokie)

Napięcie wejściowe AC na UPSsie jest wyższe niż 20% zakresu nominalnego, poczekaj aż napięcie wejściowe AC wróci do normy

R20 INPUT CB OPEN (otwarty rozłącznik CB)

Wejście UPS jest odzdzielone od sieci poprzez stycznik, ten komunikat będzie wyświetlony, razem z innym alarmem, sprawdź kolejne alarmy

R21 PFC STOP (prostownik zatrzymany)

Prostownik zatrzymał się samoczynnie, czekaj aż wystratuje ponownie, inne alarmy pokazuje pczyczynę zatrzymania prostownika, Poczekaj minutę, jeśli alarmy będą nadal, wezwij serwis

R22 POS CHG LIMIT, R23 NEG CHG LIMIT (R22 limit prądu ładowania na +, R23 limit prądu ładowania na -)

Ten komunikat jest normalny, jeśli prąd ładowania akumulatorów osiągnął wartość limitową podczas procesu ładowania

R24 WAITING DC BUS (Magistrala DC czeka)

Napięcie magistrali DC UPSa nie jest wystarczająca do startu, poczekaj 2 minuty, jeśli komunikat jest nadal, wezwij serwis

R25 BATTERY FAILURE (błąd akumulatora)

Podczas ostatniego testu jeden lub więcej akumulatorów jest uszkodzonych, wezwij serwis At the last battery test one or more defected batteries found, call service.

R26 BATT TEMP SENSOR (czujnik temperatury baterii)

Nieprawidłowe działanie czujnika temperatury akumulatorów, wezwij serwis.

R27 BATT TEMP HIGH (temperatura akumulatorów wysoka)

Jeśli akumulatory ulokowane są poza UPSem, sprawdź aktualną temperaturę w kabinie akumulatorów, jest jest wysoka – użyj klimatyzatora, jeśli akumulatory są wewnątrz UPSa, sprawdż temperaturę wewnątrz, jeśli prawidłowa – wezwij serwis.

L02 TH2 TEMP HIGH, L04 TH2 TEMP LOW (L02 TH2 – temperatura wysoka, L04 TH2 – temperatura niska)

UPS TH2 – temperatura wewnątrz kabiny jest poza tolerancją, sprawdź następujące:

- jeśli wejścia powietrza lub wyjścia są zapchane przez kurz wyczyść
- jeśli jakiś materiał blokuje przepływ powiertrza poprzez wejścia i wyjścia powietrza – usuń materiał,
- jeśli mimo to temperatura wewnątrz jest wyższa niż 45 C, użyj systemu klimatyzacji

L05 FAN MAINT (Konserwacja wentylatorów)

Konserwacja z powodu systemu chłodzenia wentylatorów w UPSie, wezwij serwis.

L06 BATTERY MAINT (konserwacja akumulatorów) Konserwacja z powodu akumulatorów w UPSie, wezwij serwis

L08 TH1 SENSOR FAIL, L09 TH2 SENSOR FAIL (L08 TH1 – błąd czujnika, L09 TH2 – błąd czujnika)

TH1 lub TH2 czujniki temperatury są uszkodzone, wezwij serwis

L10 ENTER FAULT RESET (wejdź w reset błędów) Wezwij serwis

L11 BATT CB OPEN (otwarty rozłącznik bateryjny)

Rozłącznik bateryjny jest otwarty, w tym przypadku UPS pracuje prawidłowy ale w przypadku awarii sieci napięcie na wyjściu nie będzie podtrzymane, proszę włącz rozłącznik

L12 GENERAL MAINT (Konserwacja ogólna) Konserweacja z powodu ogólnej potrzeby przeglądu, wezwij serwis

L13 PFC CAN COMM ERR (błąd komunikacji CAN dla prostownika) Wezwij serwis

L14 INV CAN COMM ERR (błąd komunikacji CAN dla falownika) Wezwij serwis.

A00 INV FAULT = XXXX (Błąd falownika) Wezwij serwis

A01 O/P OVERCURRENT (przeciążenie prądowe na wyjściu)

Sprawdź aktualne obciążenie podłączone do UPSa, być może obecnie sumaryczne obciążenie przekracza maksymalną dozwoloną moc UPSa. Jeśli nie jest to przyczyną alarmu, wezwij serwis

A02 OVERTEMP SHUT (nadmierna temperatura)

Temperatura na radiatorze falownika jest poza tolerancją, sprawdź następujące:

- jeśli doloty i wyloty powietrza są zapchane przez kurz wyczyść
- jeśli jakiś materiał blokuje przepływ powietrza poprzez doloty i wyloty, usuń ten materiał,
- jeśli temperatura przekracza 45 C, użyj systemu wentylacji

A03 BATT HIGH (napięcie na akumulatorach wysokie)

Napięcie na magistrali DC lub na akumulatorach w UPSie, jest wysokie, jeśli obciążenie jest indukcyjne, to może się czasem zdarzać, jeśli alarm będzie się nadal wezwij serwis

A04 OUTPUT V.LOW (Napięcie na wyjściu bardzo niskie) Napięcie wyjściowe na falowniku jest niskie, wezwij serwis

A05 OUTPUT V.HIGH (Wyjście napięcia bardzo wysokie)

Napięcie wyjściowe na falowniku jest wysokie, wezwij serwis

A06 OVERLOAD SHUT (przeciążenie)

Sumaryczne obciążenie które jest podłączone do UPSa osiągneło 100% pojemności UPSa, jeśli komunikat będzie się powtarzał, wezwij sierwis do sprawdzenia UPSa, ale prawdopodobnie potrzebujesz większego mocowo UPSa.

Zanotuj: Niektóre obciążenia mają prądy udarowe, które mogą być przyczyną przeciążenia, nawet jeśli potem prąd jest w zakresie.

A07 SHORT CIRCUIT (zwarcie)

Jest zwarcie na wyjściu UPS, sprawdź instalacje I obciążęnia

A08 ON MAINTENANCE (włączony Bypass serwisowy)

Serwisowy Bypass jest włączony (pozycja 1), na tym przełączniku jest zamek który zapobiega nieautoryzowanym użyciom.

A09 MANUAL BYPASS (ręczny bypass)

Obciążenie jest transferowane na bypass z poziomu komend menu w UPS, transferuj obciążenie na falownik

A10 BATTERY LOW SHUT (niski poziom na akumulatorach)

Napięcie na magistrali DC lub akumulatorach jest jest niskie. Jeśli napięcie sieciowe jest Ok, wezwij serwis. Jeśli nie ma napięcia sieciowego, poczekaj aż będzie, UPS wystartuje automatycznie.

A11 REPO STOP (użyty stop poprzez zdalne wyłączenie awaryjne)

Zewnętrzny przycisk REPO został naciśnięty, aby ponownie włączyć UPS wyłącz wszystko i włącz ponownie

A12 DC BALANCE BAD (zła równowaga DC)

Wezwij serwis

A13 PEAK CURRENT (pik prądowy)

Bardzo wysoki prąd zmierzony na wyjściu UPS, sprawdź obciążenie

A14 INV NOT START (falownik nie wystartował) Wezwij serwis

A17 BYPASS FAILURE, A18 BYPASS VOLT, A19 BYP FREQ.TOLER (A17 błąd bypassu, A18 napiecie bypassu, A19 tolerancja częstotliwości na bypassie)

Wejście na UPS lub na Bypassie, napięcie lub częstotliwość jest poza tolerancją, poczekaj aż napięcie wróci do prawidłowych wartości. Jeśli komunikat będzie długi czas, sprawdź wejściowe bezpieczniki, przełączniki itp. na panelu dystrybucji.

A20 OVERLOAD (przeciążenie)

UPS obecnie działa, ale obciążenie osiągnęło 100% pojemności UPSa, jeśli sytuacja będzie długotrwała falownik wyłączy się z opóźnieniem. Sprawdź obciążenie UPSa.

A21 OVERTEMP (nadmietna temperatura)

Temperatura na radiatorze falownika jest poza tolerancją, sprawdź następujące:

- jeśli doloty i wyloty powietrza są zapchane przez kurz wyczyść
- jeśli jakiś materiał blokuje przepływ powietrza poprzez doloty i wyloty, usuń ten materiał,
- jeśli temperatura przekracza 45 C, użyj systemu wentylacji

A22 OUTPUT OFF (wyjście wyłączone)

Podczas awarii sieci zasilającej, gdy czas autonomii poprzez akumulatory zakończy się, ten komunikat jest prawidłowy, skończyła się dostępna energiam, więc UPS wyłączył się. Jeśli ten komunikat występuje pernamentnie wezwij serwis, jeśli nie komunikat automatycznie zostanie usunięty z wyświetlacza

A23 ON BYPASS (Bypass włączony)

Z jakiejś przyczyny UPS transferował obciążenie na Bypass, sprawdź pozostałe komunikaty alarmowe, które wystepują razem z powyższym. Jeśli UPS pozostaje w tym stanie przez długi czas, wezwij serwis.

A24 REVERSE CURRENT (prąd zwrotny)

Jakieś obciążenie jak silnik podłączony do wyjścia UPSa wprowadza prąd zwrotny, zwrotna energia jest aplikowana do UPSa. Wezwij serwis

A25 INV RESET (reset falownika)

Jest to kontrolka włączenia pracy modułu falownika, przez 10 sekund ten komunikat będzie pokazany, po 10 sekundach komunikat zniknie

A26 BATTERY LOW (akumulatory napięcie niskie)

Napięcie na magistrali DC lub akumulatorach jest niskie, UPS działa ale napięcie DC zmniejsza się. Jeśli ten komunikat wyświetla się podczas awarii sieci, oznacza to, że zaczyna brakować energii na akumulatorach i ten komunikat jest naturalny. Ale jeśli ten komunikat pojawia się podczas normalnej pracy z sieci – wezwij serwis.

A27 GENERATOR MODE (tryb agregatu prądotwórczego)

UPS działa w trybie agregatu prądotwórczego, kiedy agregat wyślę kominukat stopu do UPSa, UPS automatycznie wróci do standardowego trybu pracy.

A28 O/P PHASE LOSS (utrata fazy na wyjściu)

Wezwij serwis

A29 SYNCHRON BAD (zła synchronizacja)

To jest tylko ostrzeżenie, które pokazuje, że napiecie na falowniku i bypassie nie są zsynchronizowane ze sobą. Nie ma nic do zmiany, trzeba czekać aż się zsynchronizują.

A30 SHORT CIRCUIT (krótkie zwarcie)

Krótsze niż 4 okresy (40 milisekund) wystąpiło zwarcie na wyjściu UPS, teraz UPS działa, ale musisz sprawdzić instalacje i obciążenie.

A31 OUTPUT SWITCH (wyjściowy przełącznik)

Wyjściowy przełącznik UPS jest wyłączony, (pozycja 0), włącz przełącznik na pozycje 1

A32 SERVICE LOGIN (logowanie serwisowe)

To tylko ostrzeżenie, że personel logował się serwisowo do UPSa

A34 BYP ROTATE PHASE (Rotacja faz na Bypassie)

Sekwencja faz na Bypassie, nie pasuje do rotacji faz na wyjściu UPSa. Sprawdź prawidłowość faz, jeśli pomylona zmień.

A35 INV STOP (falownik stop)

Ten komunikat pokazuje, że moduł falownika przerwał pracę, sprawdź pozostałe komunikaty celem ustalenia przyczyny.

A36 INV DC DOWN (Falownik DC dół)

Wezwij serwis

A37 AC CURR LIMIT (AC limit prądowy)

Alarm pokazuje, że na wyjściu prąd jest bardzo wysoki (wyższy niż 150%) i UPS osiągnął

limit. Ten komunikat jest chwilowy, ale jeśli będzie trwał wezwij serwis

A38 FUSE FAILURE Błąd bezpeczników Wezwij serwis

A39 PSP FAILURE (Błąd PSP) Wezwij serwis

A43 USER LOGIN (logowanie użytkownika) To tylko ostrzeżenie, logowanie użytkownika do UPS

A45 SERV.PASSWORD (hasło serwisowe) Wezwij serwis, start UPSa jest niemożliwy

4. Instrukcja operacji

4.1 Wstęp

Po wykonaniu elektrycznych połączeń na UPSie upewnij się, że wszystkie rozłączniki, włączniki są wyłączone (pozycja "0")

1. Sprawdź polaryzacje połączeń bateryjnych:

Batt. (+): +V (nominalne napięcie +360V, napięcie naładowania 405V)

N Busbar: 0V (punkt wspólny dla grupy "+" i grupy "-")

Batt. (-): -V (Nominalne napięcie -360V, napięcie naładowania -405V)

2. Sprawdź 3 fazowe wejście AC i połączenie przewodu neutrlanego (zwróć uwagę na kolejność faz)

Uwaga!!!!!! 2 przewody powinny być użyte do połączeń grup akumulatorów i połączenie punktu wspólnego powinno być podłączone do terminalu K2

Uwaga!!!!!! UPS nigdy nie powinien działać bez połączenia przewodu neutralnego.

3. Sprawdź podłączenie wyjścia UPSa na obciążenie

4.2 Operowanie UPSem w trybie online

4.2.1 Start UPSa ze stanu wyłączenia:

- 1. Włącz przełącznik S1 (AC wejście) w pozycje 1
- 2. Włącz przełącznik S2 (Bypass) w pozycje 1
- Włącz przełącznik S4 (AC wyjście) w pozycje 1 Uwaga!!!!! Napięcie z Bypassu będzie połączone do terminalu wyjścia UPS kiedy przełącznik S7 (On/Off) będzie włączona
 - Włącz S7 (On/Off) przełącz w pozycje 1 , LCD panel aktywuje się, pojawią się komunikaty "INW Reset" lub "PFC Reset" i oznacza to, że prostownik zaczął pracować

- 5. Parę sekund później wyłączy się czerwona dioda L2 na przednim panelu od Bypassu, włączy się zielona dioda L6 odpowiedzialna za prostownik
- 6. Włącz S5 (baterie) przełącz w pozycje 1, połączysz akumulatory z UPSem
- 7. UPS jest gotowy do normalnej pracy

4.2.2 Wyłączenie UPSa

Po wyłączeniu krytycznych obciążeń z UPSa:

- 1. Wyłącz S4 (wyjście AC) przełącz w pozycje 0
- 2. Wyłącz S7 (przełącznik On/Off) przełącz w pozycje 0
- 3. Wyłącz S5 (Baterie) przełącz w pozycje 0
- 4. Wyłącz S2 (Bypas) przełącz w pozycje 0
- 5. Wyłącz S1 (wejście AC) przełącz w pozycje 0

Po przeprowadzeniu powyższej procedury UPS jest kompletnie wyłączony, w tym przypadku prostownik, falownik, nie operują i baterie nie są ładowne.

4.2.3 Przełączenie UPS z z normalnej pracy do trybu serwisowego

- Użyj "Down" (dół) przycisk do wybrania linii "Command menu" (menu komend) i naciśnij przycisk "Enter". Użyj "down" (dół) znowu aby przejść do komendy "Bypass". Naciśnij Enter, UPS przejdzie do trybu bypass. Na ekranie pojawią się komunikaty "A09 Manual bypass" (ręczny bypass), poza tym dioda L6 (obciążenie na UPS) widoczna na panelu frontowym zgaśnie, zapali się dioda L2 (bypass)
- 2. Usuń blokadę S3 (przełącznik ręczny bypass) i przełącz w pozycje 1
- 3. Wyłącz S7, S5, S1, S2, S4

Teraz napięcie z bypassu jest dostarczane bezpośrednio na wyjście UPSa. Na komponentach UPSa nie ma napięcia AC albo DC. Można przeprowadzać pracę serwsowe.

4.2.4 Przełączenie się z trybu ręcznego Bypassu na normalną pracę.

- 1. Włącz S1 (AC wejście)
- 2. Włącz S2 (Bypass)
- 3. Włącz (AC wyjście)
- 4. Włącz S7 (przełącznik ON/OFF), włączy się panel. "prostownik Start" komunikat pojawi się na panelu. Po starcie prostownika, falownik nie wystartuje, munikat Maint. SW.ON,
- 5. Wyłącz S3 (ręczny bypass), i zablokuj ponownie. Inwerter wystartuje automatycznie.
- 6. Włącz S5 (akumulatory)

UPS jest gotowy do normalnej pracy.

4.3 Zachowanie UPS podczas awarii sieci

Kiedy napiecie sieciowe nie jest dostępne pojawi się komunikat na wyświetlaczu LCD "R02 awaria sieci". Dodatkowo pojawi się sygnalizacja dźwiękowa. UPS podtrzyma zasilanie krytycznych urządzeń, poprzez konwersje napięcia akumulatorów na napięcie sieciowe AC, i utrzyma operacje urządzeń bez żadnej przerwy. Podtrzymanie akumulatorowe może być wydłużone poprzez odłączenie w danej chwili niepotrzebnych obciążeń.

Ale nie włączaj ponownie tych obciążeń podczas operowania z akumulatorów. Po przedziale czasowym kiedy napięcie sieciowe jest znów dostępne, UPS wróci do normalnego trybu pracy. Komunikaty znikną.

Autonomia zależy od pojemności akumulatorów, stanu naładowania, wieku akumulatorów, aktualnego obciążenia UPSa, i temperatury. Jeśli napięcie sieciowe nie wraca wyłącz krytyczne obciążenia przed zupełnym rozładowaniem akumulatorów.

"**A26 BATERRY LOW"** - informacja pojawi się na wyświetlaczu kiedy napięcie na akumulatorach będzie niskie, jest to ostrzeżenie, że akumulatory zbliżają się do rozładowania.

"A10 BATTERY LOW SHUT" informacja pojawi się na wyświetlaczu kiedy napięcie na akumulatorach jest bliskie rozładowania, UPS wkrótce wyłączy się. Krytyczne obciążenia nie będą zasilane.

Jeśli zapasowy agregat prądotwórczy jest włączony w system zasilania, uruchom go niezwłocznie aby zasilić UPS, akumulatory będą znów ładowane. Gdy używasz UPSa razem agregatem i automatyką samoczynnego startu, rozładowanie akumulatorów zdecydowanie spadnie i proces ich ładowania będzie szybszy przy awarii sieci.

5. Konserwacja

Uwaga: Nie ma w UPSie wewnątrz części czy grup akumulatorów, które wymagały by konserwacji przez użytkownika. Dlatego nie otwieraj obudowy UPSa. Nigdy nie dotykaj złącz akumulatorowych. Jest ryzyko porażenia nawet wtedy gdy UPS jest wyłączony (poprzez elementy magazynujące energie). Dlatego nieautoryzowane otwieranie obudowy UPSa lub naprawy, konserwacje itp. nie sią rekomendowane i są zabronione. W innym przypadku mogą nastąpić poważne uszkodzenia.

5.1 Konserwacja

Niektóre komponenty wewnątrz UPSa wymagają systematycznych konserwacji poprzez personel serwisowy. Poza tym niektóre komponenty mocy wewnątrz UPS potrzebują dobrej wentylacji i chłodzenia. Dlatego doloty i wyloty powietrza UPSa powinny być czyszczone systematycznie. Wentylatory jako komponent mechaniczny i ruchomy powinien być również sprawdzany, czy działa prawidłowo.

DS300 seria informuje użytkownika o tych konserewacjach gdy wystąpią jest na to czas odpowiednim ostrzeżeniem: Konserwacja wentylatorów Konserwacja akumulatorów

Konserwacja ogólna

Przy zachowwaniu tych procedur konserwacyjnych rozwiązując małe problemy unikamy dużych uszkodzeń.

Seria DS300 została zaprojektowana tak aby użytkownik miał jak najmniej pracy. Użytkownik powinien tylko czynić poniższe procedury aby długie lata użytkować UPS bez awarii.

5.2 Codzienne sprawdzenia

Obserwuj UPS codziennie i sprawdź następujące:

Sprawdź panel kontrolny, sprawdź zmierzone parametry i diody kontrolne. Sprawdź czy nie wyświetla się komunikat błędu.

Sprawdź czy nie ma sygnałów o nadmiernej temperaturze

Sprawdź wizualnie czy wentylatory działają

Sprawdź czy wloty i wyloty powietrzne UPSa są przelotowe. Czy nie są zabrudzone lub zapchane poprzez zewnętrzny materiał. Jeśli tak, wyczyść otwory.

Zadbaj o to aby nie zostawiać niczego na UPSie.

5.3 Tygodniowe sprawdzenia:

1. Sprawdź panel frontowy i zapisz rezultaty.

2. Zmierz (z poziomu menu pomiary – Measurments menu), napięcie na każdej z faz i zapisz wartości.

- 3. Zmierz (z poziomu menu pomiary Measurments menu) wartość prądu i zapisz wartość.
- 4. Przeprowadź ręczny test akumulatorów (z poziomu menu komend Commands Menu) i sprawdź status akumulatorów
- 5. Można przetrzeć suchym materiałem obudowę.

Zapisuj jeśli możliwe czas sprawdzenia UPSa. Porównuj zapisy z poprzednimi i sprawdź czy były jakieś zmiany. Jeśli zostało dodane urządzenie do zasilania zapisz jakie i jaki ma typ obciążenia. Może to być pomocne serwisowi technicznemu przy ocenie uszkodzenia jeśli nastąpi. Jeśli nastąpi istotna zmiana parametrów przy porównaniu bez żadnych oczywistych przyczyń skontaktuj się z serwisem.

5.4 Coroczne konserwacje

Coroczne konserwacje poprzez autoryzowany serwis powinny być przeprowadzane przynajmniej 2 razy na rok w celu sprawdzenia bezpieczeństwa i efektywności operowania Twojego UPS i grupy akumulatorów. UPS generuję ostrzeżenia kiedy czas konserwacji jest oczekiwany.

5.5 Przechowywanie i transport UPS

1. Sprawdź stattus naładowania poprzez ręczny test akumulatorów przed magazynowwaniem UPS. Jesli poziom naładowania nie jest wystarczający, zostaw UPS na przynajmniej 12 godzin w celu naładowania akumulatorów.

2. Rozłączenie przewodów powinno być przeprowadzane przez autryzowany serwis.

3. Akumulatory powinny być doładowywane raz na 6 miesięcy podczas magazynowania

Przechowuj UPS i akumulatory w chłodnym i suchym miejscu. Idealna temperatura dla UPS to 0-40^c C stopni, dla akumulatorów 10 ^cC-35^c C stopni.

4. UPS powinien zostać umieszczony na palecie i powinen być transportowany na palecie.

6. Błędy i diagnozowanie

6. 1 Ogólne procedury postępowania w przypadkach zauważenia błędu i diagnozowaniu

UPS składa się ze skomplikowanych urządzeń elektronicznych kontrolujących obwód. W przypadku wystąpenia jakiekokolwiek błędu obwodu elektrycznego, potrzebna jest zaawansowana wiedza na temat funkcjonowania tych urządzeń. Ten podrodział odnosi się tylko do przekazania wiedzy na temat niezbędnych pierwszych interwencji.

Nie ma prostego sposobu do lokalizacji możliwego błędu. Większość błędów może nie być widoczna jako widoczne uszkodzenie. Ogólnie UPS może operować w normalnym trybie bądź poprzez Bypas. Ale aby poznać przyczyny parametry powinny być regularnie zapisywane jak przekazano wcześniej.

Ogólnie napiecie wyjściowe może oscylować o 2% od zadanej wielkości. Jeśli wartośc jest z poza tego zakresu należy zdiagnozować przyczynę.

Następująca struktura działań musi być systematyczna jak następuje aby spróbować zdiagnozować błąd:

Przyczyna błędu: Pierwszy krok to zapis komunikatów, wskaźników LED na panelu, wartości parametrów i status przełączników. To musi być zrobione najpierw.

Interwencje naprawcze: Po zapisie wszystkich wydarzeń, sprawdź co oznaczają poszczególne alarmy. Być może niektóre będą w relacji do zaradczych procedur.

Zaraportuj błąd: Personel techniczny musi jasno wiedzieć, co zostało zrobione. Informacje te będą potrzebne do naprawy.

6.2 Przed zadzwonieniem po serwis

Prosze zanotuj jak niżej:

- 1. Czy przeczytałeś instrukcje uważnie I zaaplikowałeś procedury zgodnie z nią?
- 2. Czy przełączniki i rozłączniki są w normalnej pozycji?
- 3. Czy panel dystrybucyjny jest podłączony do zasilania?
- 4. Czy rozłącznik bateryjny jest w pozycji 1, gdy UPS jest w trybie normalnej pracy
- 5. Czy są włączone ostrzegawcze lampy sygnalizacyjne ?
- 6. Czy są jakieś zmiany na obciążeniu na wyjściu UPSa
- 7. Czy wystąpiły jakieś przeciążenia ?

7. Monitorowanie I kontrola zdalna UPS

Następujące podłączenia są możliwe dla serii UPS DS300:

- komunikacja poprzez złącze szeregowe
- karta przekaźnikowa
- zdalny panel monitorujący

Użyj jedną z powyższych opcji komunikacji dla zdalnego monitoringu i kontroli systemu. Ale w niektórych systemach możesz użyć 2 lub 3 opcje w tym samym czasie. W tym przypadku akcesoria Delta mogą pomóc znaleźć stosowne rozwiązanie.

7.1 Użycie portu szeregowego

UPS serii DS300 daję do dyspozycji użytkownikowi 2 porty szeregowe. Oba znich mogą służyć do komunikacji. Ale w trybie pracy serwisowej port 2 zmienia swoje zastosowanie jako port serwisowy.

Wszystkie dane z UPS mogą być przesyłane. Wszystkie wartości napięć, prądów zmierzonych przez UPS, alarmy, ostrzeżenia i kody statusów mogą być monitorowane.

Ponieważ system komunikacji został zaprojektowany do interakcji, UPS może otrzymywać komendy z jednostek monitorujących i kontrolujących. Poniższe komendy z listy są dostępne:

- przełącz na Bypass
- Przełącz na falownik
- Dźwięk wyłącz/włącz
- Ustaw datę i czas UPS
- wykonaj szybki test akumulatorów
- Test akumulatorów aż do alarmu niskiego napięcia

- odwołaj test akumulatorów
- Wyłącz napięcie na wyjściu UPS natychmiast (wyłączenie)
- Wyłącz napięcie na wyjściu UPS z opóźnieniem (wyłączenie z opóźnieniem)
- Wyłącz napięcie na wyjściu UPS (wyłączenie) i włącz napięcie na wyjściu UPS (restart)
- Odwołaj wyłączenie
- zmień nazwę UPS

Te komendy są możliwe tylko jeśli jest ustawiona opcja:

REMOTE CNTRL: ON

w menu:

OPTIONS/COMMUNICATION OPTIONS

i jeśli przesłane jest hasło użytkownika . W innym przypadku UPS nie zastosuję tych poleceń i tylko informacje będą dostępne z tego portu.

Specjalne oprogramowanie jest wymagane do użytkowania portu szeregowego. Niektóre z komend powyższych mają specjalną funkcje i mogą być aktywowane tylko porzez program TMON na PC podłączonym szregowo do UPS.

TMON jest programem grupy Delta stworzonym przez Delta.

Dodatkowo, zdalny monitoring i kontrola możliwa jest z każdego typu operacyjnego używanego na świecie i program jest stale rozwijany. To oprogramowanie może być dostarczone przez Delta.

7.2 Szeregowy Port komunikacyjny – podłączenie przewodowe

Maksymalna długość przewodu RS232 to 25 metrów. Do zdalnego panelu i UPSa konfiguracja pinów jest ważna. Poniższe dane odnośzą się do portu com1 i com2:

UPS strona	Panel strona
9 Tx	2 Rx
7 Gnd	5 Gnd
6 Rx	3 Tx

7.3 Połączenia karty przekaźnikowej

Niektóre waże komunikaty UPS można monitorować poprzez ten typ połączeń. Te fukcje są wymienione poniżej:

Terminal	
1-2	Połączony z UPS rozłącznik bateryjny lub funkcja programowalna na

	wyjście przekaźnika 1
3-4	Status pozycji pracy połączonego rozłacznika bateryjnego
5-6	Status pracy agregatu – wejście
7-8	Zdalne awaryjne wyłączenie zasilania (REPO) – zwarcie złączy powoduję
	zadziałanie
9-10	Zewnętrzne TH1 wejście czujnika temperatury
11-12	Funkcja programowalna na wyjście przekaźnika 2
13-14	Funkcja programowalna na wyjście przekaźnika 3
15-16	Funkcja programowalna na wyjście przekaźnika 4

Uwaga: maksymalnie 42VAC lub 60VAC napięcie może być podłączone do zestyków karty interfejsowej. Zestyki przekaźnika pracują w trybie NO (Normalnie otwarte), czyli przekaźnik jest nieakttywny jeśli alarm nie jest aktywny I obwód zestyku jest otwarty.